45053f3371ca7d0bb962e72f86f8ba930411b5bf
[sfrench/cifs-2.6.git] / drivers / gpu / drm / drm_drv.c
1 /*
2  * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3  *
4  * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5  * All Rights Reserved.
6  *
7  * Author Rickard E. (Rik) Faith <faith@valinux.com>
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the next
17  * paragraph) shall be included in all copies or substantial portions of the
18  * Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26  * DEALINGS IN THE SOFTWARE.
27  */
28
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/pseudo_fs.h>
35 #include <linux/slab.h>
36 #include <linux/srcu.h>
37
38 #include <drm/drm_accel.h>
39 #include <drm/drm_cache.h>
40 #include <drm/drm_client.h>
41 #include <drm/drm_color_mgmt.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_file.h>
44 #include <drm/drm_managed.h>
45 #include <drm/drm_mode_object.h>
46 #include <drm/drm_print.h>
47 #include <drm/drm_privacy_screen_machine.h>
48
49 #include "drm_crtc_internal.h"
50 #include "drm_internal.h"
51 #include "drm_legacy.h"
52
53 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
54 MODULE_DESCRIPTION("DRM shared core routines");
55 MODULE_LICENSE("GPL and additional rights");
56
57 static DEFINE_SPINLOCK(drm_minor_lock);
58 static struct idr drm_minors_idr;
59
60 /*
61  * If the drm core fails to init for whatever reason,
62  * we should prevent any drivers from registering with it.
63  * It's best to check this at drm_dev_init(), as some drivers
64  * prefer to embed struct drm_device into their own device
65  * structure and call drm_dev_init() themselves.
66  */
67 static bool drm_core_init_complete;
68
69 static struct dentry *drm_debugfs_root;
70
71 DEFINE_STATIC_SRCU(drm_unplug_srcu);
72
73 /*
74  * DRM Minors
75  * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
76  * of them is represented by a drm_minor object. Depending on the capabilities
77  * of the device-driver, different interfaces are registered.
78  *
79  * Minors can be accessed via dev->$minor_name. This pointer is either
80  * NULL or a valid drm_minor pointer and stays valid as long as the device is
81  * valid. This means, DRM minors have the same life-time as the underlying
82  * device. However, this doesn't mean that the minor is active. Minors are
83  * registered and unregistered dynamically according to device-state.
84  */
85
86 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
87                                              enum drm_minor_type type)
88 {
89         switch (type) {
90         case DRM_MINOR_PRIMARY:
91                 return &dev->primary;
92         case DRM_MINOR_RENDER:
93                 return &dev->render;
94         case DRM_MINOR_ACCEL:
95                 return &dev->accel;
96         default:
97                 BUG();
98         }
99 }
100
101 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
102 {
103         struct drm_minor *minor = data;
104         unsigned long flags;
105
106         WARN_ON(dev != minor->dev);
107
108         put_device(minor->kdev);
109
110         if (minor->type == DRM_MINOR_ACCEL) {
111                 accel_minor_remove(minor->index);
112         } else {
113                 spin_lock_irqsave(&drm_minor_lock, flags);
114                 idr_remove(&drm_minors_idr, minor->index);
115                 spin_unlock_irqrestore(&drm_minor_lock, flags);
116         }
117 }
118
119 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
120 {
121         struct drm_minor *minor;
122         unsigned long flags;
123         int r;
124
125         minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
126         if (!minor)
127                 return -ENOMEM;
128
129         minor->type = type;
130         minor->dev = dev;
131
132         idr_preload(GFP_KERNEL);
133         if (type == DRM_MINOR_ACCEL) {
134                 r = accel_minor_alloc();
135         } else {
136                 spin_lock_irqsave(&drm_minor_lock, flags);
137                 r = idr_alloc(&drm_minors_idr,
138                         NULL,
139                         64 * type,
140                         64 * (type + 1),
141                         GFP_NOWAIT);
142                 spin_unlock_irqrestore(&drm_minor_lock, flags);
143         }
144         idr_preload_end();
145
146         if (r < 0)
147                 return r;
148
149         minor->index = r;
150
151         r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
152         if (r)
153                 return r;
154
155         minor->kdev = drm_sysfs_minor_alloc(minor);
156         if (IS_ERR(minor->kdev))
157                 return PTR_ERR(minor->kdev);
158
159         *drm_minor_get_slot(dev, type) = minor;
160         return 0;
161 }
162
163 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
164 {
165         struct drm_minor *minor;
166         unsigned long flags;
167         int ret;
168
169         DRM_DEBUG("\n");
170
171         minor = *drm_minor_get_slot(dev, type);
172         if (!minor)
173                 return 0;
174
175         if (minor->type != DRM_MINOR_ACCEL) {
176                 ret = drm_debugfs_register(minor, minor->index,
177                                            drm_debugfs_root);
178                 if (ret) {
179                         DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
180                         goto err_debugfs;
181                 }
182         }
183
184         ret = device_add(minor->kdev);
185         if (ret)
186                 goto err_debugfs;
187
188         /* replace NULL with @minor so lookups will succeed from now on */
189         if (minor->type == DRM_MINOR_ACCEL) {
190                 accel_minor_replace(minor, minor->index);
191         } else {
192                 spin_lock_irqsave(&drm_minor_lock, flags);
193                 idr_replace(&drm_minors_idr, minor, minor->index);
194                 spin_unlock_irqrestore(&drm_minor_lock, flags);
195         }
196
197         DRM_DEBUG("new minor registered %d\n", minor->index);
198         return 0;
199
200 err_debugfs:
201         drm_debugfs_cleanup(minor);
202         return ret;
203 }
204
205 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
206 {
207         struct drm_minor *minor;
208         unsigned long flags;
209
210         minor = *drm_minor_get_slot(dev, type);
211         if (!minor || !device_is_registered(minor->kdev))
212                 return;
213
214         /* replace @minor with NULL so lookups will fail from now on */
215         if (minor->type == DRM_MINOR_ACCEL) {
216                 accel_minor_replace(NULL, minor->index);
217         } else {
218                 spin_lock_irqsave(&drm_minor_lock, flags);
219                 idr_replace(&drm_minors_idr, NULL, minor->index);
220                 spin_unlock_irqrestore(&drm_minor_lock, flags);
221         }
222
223         device_del(minor->kdev);
224         dev_set_drvdata(minor->kdev, NULL); /* safety belt */
225         drm_debugfs_cleanup(minor);
226 }
227
228 /*
229  * Looks up the given minor-ID and returns the respective DRM-minor object. The
230  * refence-count of the underlying device is increased so you must release this
231  * object with drm_minor_release().
232  *
233  * As long as you hold this minor, it is guaranteed that the object and the
234  * minor->dev pointer will stay valid! However, the device may get unplugged and
235  * unregistered while you hold the minor.
236  */
237 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
238 {
239         struct drm_minor *minor;
240         unsigned long flags;
241
242         spin_lock_irqsave(&drm_minor_lock, flags);
243         minor = idr_find(&drm_minors_idr, minor_id);
244         if (minor)
245                 drm_dev_get(minor->dev);
246         spin_unlock_irqrestore(&drm_minor_lock, flags);
247
248         if (!minor) {
249                 return ERR_PTR(-ENODEV);
250         } else if (drm_dev_is_unplugged(minor->dev)) {
251                 drm_dev_put(minor->dev);
252                 return ERR_PTR(-ENODEV);
253         }
254
255         return minor;
256 }
257
258 void drm_minor_release(struct drm_minor *minor)
259 {
260         drm_dev_put(minor->dev);
261 }
262
263 /**
264  * DOC: driver instance overview
265  *
266  * A device instance for a drm driver is represented by &struct drm_device. This
267  * is allocated and initialized with devm_drm_dev_alloc(), usually from
268  * bus-specific ->probe() callbacks implemented by the driver. The driver then
269  * needs to initialize all the various subsystems for the drm device like memory
270  * management, vblank handling, modesetting support and initial output
271  * configuration plus obviously initialize all the corresponding hardware bits.
272  * Finally when everything is up and running and ready for userspace the device
273  * instance can be published using drm_dev_register().
274  *
275  * There is also deprecated support for initializing device instances using
276  * bus-specific helpers and the &drm_driver.load callback. But due to
277  * backwards-compatibility needs the device instance have to be published too
278  * early, which requires unpretty global locking to make safe and is therefore
279  * only support for existing drivers not yet converted to the new scheme.
280  *
281  * When cleaning up a device instance everything needs to be done in reverse:
282  * First unpublish the device instance with drm_dev_unregister(). Then clean up
283  * any other resources allocated at device initialization and drop the driver's
284  * reference to &drm_device using drm_dev_put().
285  *
286  * Note that any allocation or resource which is visible to userspace must be
287  * released only when the final drm_dev_put() is called, and not when the
288  * driver is unbound from the underlying physical struct &device. Best to use
289  * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
290  * related functions.
291  *
292  * devres managed resources like devm_kmalloc() can only be used for resources
293  * directly related to the underlying hardware device, and only used in code
294  * paths fully protected by drm_dev_enter() and drm_dev_exit().
295  *
296  * Display driver example
297  * ~~~~~~~~~~~~~~~~~~~~~~
298  *
299  * The following example shows a typical structure of a DRM display driver.
300  * The example focus on the probe() function and the other functions that is
301  * almost always present and serves as a demonstration of devm_drm_dev_alloc().
302  *
303  * .. code-block:: c
304  *
305  *      struct driver_device {
306  *              struct drm_device drm;
307  *              void *userspace_facing;
308  *              struct clk *pclk;
309  *      };
310  *
311  *      static const struct drm_driver driver_drm_driver = {
312  *              [...]
313  *      };
314  *
315  *      static int driver_probe(struct platform_device *pdev)
316  *      {
317  *              struct driver_device *priv;
318  *              struct drm_device *drm;
319  *              int ret;
320  *
321  *              priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
322  *                                        struct driver_device, drm);
323  *              if (IS_ERR(priv))
324  *                      return PTR_ERR(priv);
325  *              drm = &priv->drm;
326  *
327  *              ret = drmm_mode_config_init(drm);
328  *              if (ret)
329  *                      return ret;
330  *
331  *              priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
332  *              if (!priv->userspace_facing)
333  *                      return -ENOMEM;
334  *
335  *              priv->pclk = devm_clk_get(dev, "PCLK");
336  *              if (IS_ERR(priv->pclk))
337  *                      return PTR_ERR(priv->pclk);
338  *
339  *              // Further setup, display pipeline etc
340  *
341  *              platform_set_drvdata(pdev, drm);
342  *
343  *              drm_mode_config_reset(drm);
344  *
345  *              ret = drm_dev_register(drm);
346  *              if (ret)
347  *                      return ret;
348  *
349  *              drm_fbdev_generic_setup(drm, 32);
350  *
351  *              return 0;
352  *      }
353  *
354  *      // This function is called before the devm_ resources are released
355  *      static int driver_remove(struct platform_device *pdev)
356  *      {
357  *              struct drm_device *drm = platform_get_drvdata(pdev);
358  *
359  *              drm_dev_unregister(drm);
360  *              drm_atomic_helper_shutdown(drm)
361  *
362  *              return 0;
363  *      }
364  *
365  *      // This function is called on kernel restart and shutdown
366  *      static void driver_shutdown(struct platform_device *pdev)
367  *      {
368  *              drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
369  *      }
370  *
371  *      static int __maybe_unused driver_pm_suspend(struct device *dev)
372  *      {
373  *              return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
374  *      }
375  *
376  *      static int __maybe_unused driver_pm_resume(struct device *dev)
377  *      {
378  *              drm_mode_config_helper_resume(dev_get_drvdata(dev));
379  *
380  *              return 0;
381  *      }
382  *
383  *      static const struct dev_pm_ops driver_pm_ops = {
384  *              SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
385  *      };
386  *
387  *      static struct platform_driver driver_driver = {
388  *              .driver = {
389  *                      [...]
390  *                      .pm = &driver_pm_ops,
391  *              },
392  *              .probe = driver_probe,
393  *              .remove = driver_remove,
394  *              .shutdown = driver_shutdown,
395  *      };
396  *      module_platform_driver(driver_driver);
397  *
398  * Drivers that want to support device unplugging (USB, DT overlay unload) should
399  * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
400  * regions that is accessing device resources to prevent use after they're
401  * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
402  * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
403  * drm_atomic_helper_shutdown() is called. This means that if the disable code
404  * paths are protected, they will not run on regular driver module unload,
405  * possibly leaving the hardware enabled.
406  */
407
408 /**
409  * drm_put_dev - Unregister and release a DRM device
410  * @dev: DRM device
411  *
412  * Called at module unload time or when a PCI device is unplugged.
413  *
414  * Cleans up all DRM device, calling drm_lastclose().
415  *
416  * Note: Use of this function is deprecated. It will eventually go away
417  * completely.  Please use drm_dev_unregister() and drm_dev_put() explicitly
418  * instead to make sure that the device isn't userspace accessible any more
419  * while teardown is in progress, ensuring that userspace can't access an
420  * inconsistent state.
421  */
422 void drm_put_dev(struct drm_device *dev)
423 {
424         DRM_DEBUG("\n");
425
426         if (!dev) {
427                 DRM_ERROR("cleanup called no dev\n");
428                 return;
429         }
430
431         drm_dev_unregister(dev);
432         drm_dev_put(dev);
433 }
434 EXPORT_SYMBOL(drm_put_dev);
435
436 /**
437  * drm_dev_enter - Enter device critical section
438  * @dev: DRM device
439  * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
440  *
441  * This function marks and protects the beginning of a section that should not
442  * be entered after the device has been unplugged. The section end is marked
443  * with drm_dev_exit(). Calls to this function can be nested.
444  *
445  * Returns:
446  * True if it is OK to enter the section, false otherwise.
447  */
448 bool drm_dev_enter(struct drm_device *dev, int *idx)
449 {
450         *idx = srcu_read_lock(&drm_unplug_srcu);
451
452         if (dev->unplugged) {
453                 srcu_read_unlock(&drm_unplug_srcu, *idx);
454                 return false;
455         }
456
457         return true;
458 }
459 EXPORT_SYMBOL(drm_dev_enter);
460
461 /**
462  * drm_dev_exit - Exit device critical section
463  * @idx: index returned from drm_dev_enter()
464  *
465  * This function marks the end of a section that should not be entered after
466  * the device has been unplugged.
467  */
468 void drm_dev_exit(int idx)
469 {
470         srcu_read_unlock(&drm_unplug_srcu, idx);
471 }
472 EXPORT_SYMBOL(drm_dev_exit);
473
474 /**
475  * drm_dev_unplug - unplug a DRM device
476  * @dev: DRM device
477  *
478  * This unplugs a hotpluggable DRM device, which makes it inaccessible to
479  * userspace operations. Entry-points can use drm_dev_enter() and
480  * drm_dev_exit() to protect device resources in a race free manner. This
481  * essentially unregisters the device like drm_dev_unregister(), but can be
482  * called while there are still open users of @dev.
483  */
484 void drm_dev_unplug(struct drm_device *dev)
485 {
486         /*
487          * After synchronizing any critical read section is guaranteed to see
488          * the new value of ->unplugged, and any critical section which might
489          * still have seen the old value of ->unplugged is guaranteed to have
490          * finished.
491          */
492         dev->unplugged = true;
493         synchronize_srcu(&drm_unplug_srcu);
494
495         drm_dev_unregister(dev);
496
497         /* Clear all CPU mappings pointing to this device */
498         unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
499 }
500 EXPORT_SYMBOL(drm_dev_unplug);
501
502 /*
503  * DRM internal mount
504  * We want to be able to allocate our own "struct address_space" to control
505  * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
506  * stand-alone address_space objects, so we need an underlying inode. As there
507  * is no way to allocate an independent inode easily, we need a fake internal
508  * VFS mount-point.
509  *
510  * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
511  * frees it again. You are allowed to use iget() and iput() to get references to
512  * the inode. But each drm_fs_inode_new() call must be paired with exactly one
513  * drm_fs_inode_free() call (which does not have to be the last iput()).
514  * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
515  * between multiple inode-users. You could, technically, call
516  * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
517  * iput(), but this way you'd end up with a new vfsmount for each inode.
518  */
519
520 static int drm_fs_cnt;
521 static struct vfsmount *drm_fs_mnt;
522
523 static int drm_fs_init_fs_context(struct fs_context *fc)
524 {
525         return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
526 }
527
528 static struct file_system_type drm_fs_type = {
529         .name           = "drm",
530         .owner          = THIS_MODULE,
531         .init_fs_context = drm_fs_init_fs_context,
532         .kill_sb        = kill_anon_super,
533 };
534
535 static struct inode *drm_fs_inode_new(void)
536 {
537         struct inode *inode;
538         int r;
539
540         r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
541         if (r < 0) {
542                 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
543                 return ERR_PTR(r);
544         }
545
546         inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
547         if (IS_ERR(inode))
548                 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
549
550         return inode;
551 }
552
553 static void drm_fs_inode_free(struct inode *inode)
554 {
555         if (inode) {
556                 iput(inode);
557                 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
558         }
559 }
560
561 /**
562  * DOC: component helper usage recommendations
563  *
564  * DRM drivers that drive hardware where a logical device consists of a pile of
565  * independent hardware blocks are recommended to use the :ref:`component helper
566  * library<component>`. For consistency and better options for code reuse the
567  * following guidelines apply:
568  *
569  *  - The entire device initialization procedure should be run from the
570  *    &component_master_ops.master_bind callback, starting with
571  *    devm_drm_dev_alloc(), then binding all components with
572  *    component_bind_all() and finishing with drm_dev_register().
573  *
574  *  - The opaque pointer passed to all components through component_bind_all()
575  *    should point at &struct drm_device of the device instance, not some driver
576  *    specific private structure.
577  *
578  *  - The component helper fills the niche where further standardization of
579  *    interfaces is not practical. When there already is, or will be, a
580  *    standardized interface like &drm_bridge or &drm_panel, providing its own
581  *    functions to find such components at driver load time, like
582  *    drm_of_find_panel_or_bridge(), then the component helper should not be
583  *    used.
584  */
585
586 static void drm_dev_init_release(struct drm_device *dev, void *res)
587 {
588         drm_legacy_ctxbitmap_cleanup(dev);
589         drm_legacy_remove_map_hash(dev);
590         drm_fs_inode_free(dev->anon_inode);
591
592         put_device(dev->dev);
593         /* Prevent use-after-free in drm_managed_release when debugging is
594          * enabled. Slightly awkward, but can't really be helped. */
595         dev->dev = NULL;
596         mutex_destroy(&dev->master_mutex);
597         mutex_destroy(&dev->clientlist_mutex);
598         mutex_destroy(&dev->filelist_mutex);
599         mutex_destroy(&dev->struct_mutex);
600         drm_legacy_destroy_members(dev);
601 }
602
603 static int drm_dev_init(struct drm_device *dev,
604                         const struct drm_driver *driver,
605                         struct device *parent)
606 {
607         struct inode *inode;
608         int ret;
609
610         if (!drm_core_init_complete) {
611                 DRM_ERROR("DRM core is not initialized\n");
612                 return -ENODEV;
613         }
614
615         if (WARN_ON(!parent))
616                 return -EINVAL;
617
618         kref_init(&dev->ref);
619         dev->dev = get_device(parent);
620         dev->driver = driver;
621
622         INIT_LIST_HEAD(&dev->managed.resources);
623         spin_lock_init(&dev->managed.lock);
624
625         /* no per-device feature limits by default */
626         dev->driver_features = ~0u;
627
628         if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
629                                 (drm_core_check_feature(dev, DRIVER_RENDER) ||
630                                 drm_core_check_feature(dev, DRIVER_MODESET))) {
631                 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
632                 return -EINVAL;
633         }
634
635         drm_legacy_init_members(dev);
636         INIT_LIST_HEAD(&dev->filelist);
637         INIT_LIST_HEAD(&dev->filelist_internal);
638         INIT_LIST_HEAD(&dev->clientlist);
639         INIT_LIST_HEAD(&dev->vblank_event_list);
640
641         spin_lock_init(&dev->event_lock);
642         mutex_init(&dev->struct_mutex);
643         mutex_init(&dev->filelist_mutex);
644         mutex_init(&dev->clientlist_mutex);
645         mutex_init(&dev->master_mutex);
646
647         ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
648         if (ret)
649                 return ret;
650
651         inode = drm_fs_inode_new();
652         if (IS_ERR(inode)) {
653                 ret = PTR_ERR(inode);
654                 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
655                 goto err;
656         }
657
658         dev->anon_inode = inode;
659
660         if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
661                 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
662                 if (ret)
663                         goto err;
664         } else {
665                 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
666                         ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
667                         if (ret)
668                                 goto err;
669                 }
670
671                 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
672                 if (ret)
673                         goto err;
674         }
675
676         ret = drm_legacy_create_map_hash(dev);
677         if (ret)
678                 goto err;
679
680         drm_legacy_ctxbitmap_init(dev);
681
682         if (drm_core_check_feature(dev, DRIVER_GEM)) {
683                 ret = drm_gem_init(dev);
684                 if (ret) {
685                         DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
686                         goto err;
687                 }
688         }
689
690         dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
691         if (!dev->unique) {
692                 ret = -ENOMEM;
693                 goto err;
694         }
695
696         if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
697                 accel_debugfs_init(dev);
698         else
699                 drm_debugfs_dev_init(dev, drm_debugfs_root);
700
701         return 0;
702
703 err:
704         drm_managed_release(dev);
705
706         return ret;
707 }
708
709 static void devm_drm_dev_init_release(void *data)
710 {
711         drm_dev_put(data);
712 }
713
714 static int devm_drm_dev_init(struct device *parent,
715                              struct drm_device *dev,
716                              const struct drm_driver *driver)
717 {
718         int ret;
719
720         ret = drm_dev_init(dev, driver, parent);
721         if (ret)
722                 return ret;
723
724         return devm_add_action_or_reset(parent,
725                                         devm_drm_dev_init_release, dev);
726 }
727
728 void *__devm_drm_dev_alloc(struct device *parent,
729                            const struct drm_driver *driver,
730                            size_t size, size_t offset)
731 {
732         void *container;
733         struct drm_device *drm;
734         int ret;
735
736         container = kzalloc(size, GFP_KERNEL);
737         if (!container)
738                 return ERR_PTR(-ENOMEM);
739
740         drm = container + offset;
741         ret = devm_drm_dev_init(parent, drm, driver);
742         if (ret) {
743                 kfree(container);
744                 return ERR_PTR(ret);
745         }
746         drmm_add_final_kfree(drm, container);
747
748         return container;
749 }
750 EXPORT_SYMBOL(__devm_drm_dev_alloc);
751
752 /**
753  * drm_dev_alloc - Allocate new DRM device
754  * @driver: DRM driver to allocate device for
755  * @parent: Parent device object
756  *
757  * This is the deprecated version of devm_drm_dev_alloc(), which does not support
758  * subclassing through embedding the struct &drm_device in a driver private
759  * structure, and which does not support automatic cleanup through devres.
760  *
761  * RETURNS:
762  * Pointer to new DRM device, or ERR_PTR on failure.
763  */
764 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
765                                  struct device *parent)
766 {
767         struct drm_device *dev;
768         int ret;
769
770         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
771         if (!dev)
772                 return ERR_PTR(-ENOMEM);
773
774         ret = drm_dev_init(dev, driver, parent);
775         if (ret) {
776                 kfree(dev);
777                 return ERR_PTR(ret);
778         }
779
780         drmm_add_final_kfree(dev, dev);
781
782         return dev;
783 }
784 EXPORT_SYMBOL(drm_dev_alloc);
785
786 static void drm_dev_release(struct kref *ref)
787 {
788         struct drm_device *dev = container_of(ref, struct drm_device, ref);
789
790         /* Just in case register/unregister was never called */
791         drm_debugfs_dev_fini(dev);
792
793         if (dev->driver->release)
794                 dev->driver->release(dev);
795
796         drm_managed_release(dev);
797
798         kfree(dev->managed.final_kfree);
799 }
800
801 /**
802  * drm_dev_get - Take reference of a DRM device
803  * @dev: device to take reference of or NULL
804  *
805  * This increases the ref-count of @dev by one. You *must* already own a
806  * reference when calling this. Use drm_dev_put() to drop this reference
807  * again.
808  *
809  * This function never fails. However, this function does not provide *any*
810  * guarantee whether the device is alive or running. It only provides a
811  * reference to the object and the memory associated with it.
812  */
813 void drm_dev_get(struct drm_device *dev)
814 {
815         if (dev)
816                 kref_get(&dev->ref);
817 }
818 EXPORT_SYMBOL(drm_dev_get);
819
820 /**
821  * drm_dev_put - Drop reference of a DRM device
822  * @dev: device to drop reference of or NULL
823  *
824  * This decreases the ref-count of @dev by one. The device is destroyed if the
825  * ref-count drops to zero.
826  */
827 void drm_dev_put(struct drm_device *dev)
828 {
829         if (dev)
830                 kref_put(&dev->ref, drm_dev_release);
831 }
832 EXPORT_SYMBOL(drm_dev_put);
833
834 static int create_compat_control_link(struct drm_device *dev)
835 {
836         struct drm_minor *minor;
837         char *name;
838         int ret;
839
840         if (!drm_core_check_feature(dev, DRIVER_MODESET))
841                 return 0;
842
843         minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
844         if (!minor)
845                 return 0;
846
847         /*
848          * Some existing userspace out there uses the existing of the controlD*
849          * sysfs files to figure out whether it's a modeset driver. It only does
850          * readdir, hence a symlink is sufficient (and the least confusing
851          * option). Otherwise controlD* is entirely unused.
852          *
853          * Old controlD chardev have been allocated in the range
854          * 64-127.
855          */
856         name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
857         if (!name)
858                 return -ENOMEM;
859
860         ret = sysfs_create_link(minor->kdev->kobj.parent,
861                                 &minor->kdev->kobj,
862                                 name);
863
864         kfree(name);
865
866         return ret;
867 }
868
869 static void remove_compat_control_link(struct drm_device *dev)
870 {
871         struct drm_minor *minor;
872         char *name;
873
874         if (!drm_core_check_feature(dev, DRIVER_MODESET))
875                 return;
876
877         minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
878         if (!minor)
879                 return;
880
881         name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
882         if (!name)
883                 return;
884
885         sysfs_remove_link(minor->kdev->kobj.parent, name);
886
887         kfree(name);
888 }
889
890 /**
891  * drm_dev_register - Register DRM device
892  * @dev: Device to register
893  * @flags: Flags passed to the driver's .load() function
894  *
895  * Register the DRM device @dev with the system, advertise device to user-space
896  * and start normal device operation. @dev must be initialized via drm_dev_init()
897  * previously.
898  *
899  * Never call this twice on any device!
900  *
901  * NOTE: To ensure backward compatibility with existing drivers method this
902  * function calls the &drm_driver.load method after registering the device
903  * nodes, creating race conditions. Usage of the &drm_driver.load methods is
904  * therefore deprecated, drivers must perform all initialization before calling
905  * drm_dev_register().
906  *
907  * RETURNS:
908  * 0 on success, negative error code on failure.
909  */
910 int drm_dev_register(struct drm_device *dev, unsigned long flags)
911 {
912         const struct drm_driver *driver = dev->driver;
913         int ret;
914
915         if (!driver->load)
916                 drm_mode_config_validate(dev);
917
918         WARN_ON(!dev->managed.final_kfree);
919
920         if (drm_dev_needs_global_mutex(dev))
921                 mutex_lock(&drm_global_mutex);
922
923         if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
924                 accel_debugfs_register(dev);
925         else
926                 drm_debugfs_dev_register(dev);
927
928         ret = drm_minor_register(dev, DRM_MINOR_RENDER);
929         if (ret)
930                 goto err_minors;
931
932         ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
933         if (ret)
934                 goto err_minors;
935
936         ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
937         if (ret)
938                 goto err_minors;
939
940         ret = create_compat_control_link(dev);
941         if (ret)
942                 goto err_minors;
943
944         dev->registered = true;
945
946         if (driver->load) {
947                 ret = driver->load(dev, flags);
948                 if (ret)
949                         goto err_minors;
950         }
951
952         if (drm_core_check_feature(dev, DRIVER_MODESET))
953                 drm_modeset_register_all(dev);
954
955         DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
956                  driver->name, driver->major, driver->minor,
957                  driver->patchlevel, driver->date,
958                  dev->dev ? dev_name(dev->dev) : "virtual device",
959                  dev->primary ? dev->primary->index : dev->accel->index);
960
961         goto out_unlock;
962
963 err_minors:
964         remove_compat_control_link(dev);
965         drm_minor_unregister(dev, DRM_MINOR_ACCEL);
966         drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
967         drm_minor_unregister(dev, DRM_MINOR_RENDER);
968 out_unlock:
969         if (drm_dev_needs_global_mutex(dev))
970                 mutex_unlock(&drm_global_mutex);
971         return ret;
972 }
973 EXPORT_SYMBOL(drm_dev_register);
974
975 /**
976  * drm_dev_unregister - Unregister DRM device
977  * @dev: Device to unregister
978  *
979  * Unregister the DRM device from the system. This does the reverse of
980  * drm_dev_register() but does not deallocate the device. The caller must call
981  * drm_dev_put() to drop their final reference, unless it is managed with devres
982  * (as devices allocated with devm_drm_dev_alloc() are), in which case there is
983  * already an unwind action registered.
984  *
985  * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
986  * which can be called while there are still open users of @dev.
987  *
988  * This should be called first in the device teardown code to make sure
989  * userspace can't access the device instance any more.
990  */
991 void drm_dev_unregister(struct drm_device *dev)
992 {
993         if (drm_core_check_feature(dev, DRIVER_LEGACY))
994                 drm_lastclose(dev);
995
996         dev->registered = false;
997
998         drm_client_dev_unregister(dev);
999
1000         if (drm_core_check_feature(dev, DRIVER_MODESET))
1001                 drm_modeset_unregister_all(dev);
1002
1003         if (dev->driver->unload)
1004                 dev->driver->unload(dev);
1005
1006         drm_legacy_pci_agp_destroy(dev);
1007         drm_legacy_rmmaps(dev);
1008
1009         remove_compat_control_link(dev);
1010         drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1011         drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1012         drm_minor_unregister(dev, DRM_MINOR_RENDER);
1013         drm_debugfs_dev_fini(dev);
1014 }
1015 EXPORT_SYMBOL(drm_dev_unregister);
1016
1017 /*
1018  * DRM Core
1019  * The DRM core module initializes all global DRM objects and makes them
1020  * available to drivers. Once setup, drivers can probe their respective
1021  * devices.
1022  * Currently, core management includes:
1023  *  - The "DRM-Global" key/value database
1024  *  - Global ID management for connectors
1025  *  - DRM major number allocation
1026  *  - DRM minor management
1027  *  - DRM sysfs class
1028  *  - DRM debugfs root
1029  *
1030  * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1031  * interface registered on a DRM device, you can request minor numbers from DRM
1032  * core. DRM core takes care of major-number management and char-dev
1033  * registration. A stub ->open() callback forwards any open() requests to the
1034  * registered minor.
1035  */
1036
1037 static int drm_stub_open(struct inode *inode, struct file *filp)
1038 {
1039         const struct file_operations *new_fops;
1040         struct drm_minor *minor;
1041         int err;
1042
1043         DRM_DEBUG("\n");
1044
1045         minor = drm_minor_acquire(iminor(inode));
1046         if (IS_ERR(minor))
1047                 return PTR_ERR(minor);
1048
1049         new_fops = fops_get(minor->dev->driver->fops);
1050         if (!new_fops) {
1051                 err = -ENODEV;
1052                 goto out;
1053         }
1054
1055         replace_fops(filp, new_fops);
1056         if (filp->f_op->open)
1057                 err = filp->f_op->open(inode, filp);
1058         else
1059                 err = 0;
1060
1061 out:
1062         drm_minor_release(minor);
1063
1064         return err;
1065 }
1066
1067 static const struct file_operations drm_stub_fops = {
1068         .owner = THIS_MODULE,
1069         .open = drm_stub_open,
1070         .llseek = noop_llseek,
1071 };
1072
1073 static void drm_core_exit(void)
1074 {
1075         drm_privacy_screen_lookup_exit();
1076         accel_core_exit();
1077         unregister_chrdev(DRM_MAJOR, "drm");
1078         debugfs_remove(drm_debugfs_root);
1079         drm_sysfs_destroy();
1080         idr_destroy(&drm_minors_idr);
1081         drm_connector_ida_destroy();
1082 }
1083
1084 static int __init drm_core_init(void)
1085 {
1086         int ret;
1087
1088         drm_connector_ida_init();
1089         idr_init(&drm_minors_idr);
1090         drm_memcpy_init_early();
1091
1092         ret = drm_sysfs_init();
1093         if (ret < 0) {
1094                 DRM_ERROR("Cannot create DRM class: %d\n", ret);
1095                 goto error;
1096         }
1097
1098         drm_debugfs_root = debugfs_create_dir("dri", NULL);
1099
1100         ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1101         if (ret < 0)
1102                 goto error;
1103
1104         ret = accel_core_init();
1105         if (ret < 0)
1106                 goto error;
1107
1108         drm_privacy_screen_lookup_init();
1109
1110         drm_core_init_complete = true;
1111
1112         DRM_DEBUG("Initialized\n");
1113         return 0;
1114
1115 error:
1116         drm_core_exit();
1117         return ret;
1118 }
1119
1120 module_init(drm_core_init);
1121 module_exit(drm_core_exit);