Documentation: embargoed-hardware-issues.rst: Add myself for Power
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22
23 #include <asm/pkru.h>
24 #include <asm/trapnr.h>
25 #include <asm/fpu/xcr.h>
26 #include <asm/debugreg.h>
27
28 #include "mmu.h"
29 #include "x86.h"
30 #include "svm.h"
31 #include "svm_ops.h"
32 #include "cpuid.h"
33 #include "trace.h"
34
35 #ifndef CONFIG_KVM_AMD_SEV
36 /*
37  * When this config is not defined, SEV feature is not supported and APIs in
38  * this file are not used but this file still gets compiled into the KVM AMD
39  * module.
40  *
41  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
42  * misc_res_type {} defined in linux/misc_cgroup.h.
43  *
44  * Below macros allow compilation to succeed.
45  */
46 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
47 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
48 #endif
49
50 #ifdef CONFIG_KVM_AMD_SEV
51 /* enable/disable SEV support */
52 static bool sev_enabled = true;
53 module_param_named(sev, sev_enabled, bool, 0444);
54
55 /* enable/disable SEV-ES support */
56 static bool sev_es_enabled = true;
57 module_param_named(sev_es, sev_es_enabled, bool, 0444);
58
59 /* enable/disable SEV-ES DebugSwap support */
60 static bool sev_es_debug_swap_enabled = false;
61 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
62 #else
63 #define sev_enabled false
64 #define sev_es_enabled false
65 #define sev_es_debug_swap_enabled false
66 #endif /* CONFIG_KVM_AMD_SEV */
67
68 static u8 sev_enc_bit;
69 static DECLARE_RWSEM(sev_deactivate_lock);
70 static DEFINE_MUTEX(sev_bitmap_lock);
71 unsigned int max_sev_asid;
72 static unsigned int min_sev_asid;
73 static unsigned long sev_me_mask;
74 static unsigned int nr_asids;
75 static unsigned long *sev_asid_bitmap;
76 static unsigned long *sev_reclaim_asid_bitmap;
77
78 struct enc_region {
79         struct list_head list;
80         unsigned long npages;
81         struct page **pages;
82         unsigned long uaddr;
83         unsigned long size;
84 };
85
86 /* Called with the sev_bitmap_lock held, or on shutdown  */
87 static int sev_flush_asids(int min_asid, int max_asid)
88 {
89         int ret, asid, error = 0;
90
91         /* Check if there are any ASIDs to reclaim before performing a flush */
92         asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
93         if (asid > max_asid)
94                 return -EBUSY;
95
96         /*
97          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
98          * so it must be guarded.
99          */
100         down_write(&sev_deactivate_lock);
101
102         wbinvd_on_all_cpus();
103         ret = sev_guest_df_flush(&error);
104
105         up_write(&sev_deactivate_lock);
106
107         if (ret)
108                 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
109
110         return ret;
111 }
112
113 static inline bool is_mirroring_enc_context(struct kvm *kvm)
114 {
115         return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
116 }
117
118 /* Must be called with the sev_bitmap_lock held */
119 static bool __sev_recycle_asids(int min_asid, int max_asid)
120 {
121         if (sev_flush_asids(min_asid, max_asid))
122                 return false;
123
124         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
125         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
126                    nr_asids);
127         bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
128
129         return true;
130 }
131
132 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
133 {
134         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
135         return misc_cg_try_charge(type, sev->misc_cg, 1);
136 }
137
138 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
139 {
140         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
141         misc_cg_uncharge(type, sev->misc_cg, 1);
142 }
143
144 static int sev_asid_new(struct kvm_sev_info *sev)
145 {
146         int asid, min_asid, max_asid, ret;
147         bool retry = true;
148
149         WARN_ON(sev->misc_cg);
150         sev->misc_cg = get_current_misc_cg();
151         ret = sev_misc_cg_try_charge(sev);
152         if (ret) {
153                 put_misc_cg(sev->misc_cg);
154                 sev->misc_cg = NULL;
155                 return ret;
156         }
157
158         mutex_lock(&sev_bitmap_lock);
159
160         /*
161          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
162          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
163          */
164         min_asid = sev->es_active ? 1 : min_sev_asid;
165         max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
166 again:
167         asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
168         if (asid > max_asid) {
169                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
170                         retry = false;
171                         goto again;
172                 }
173                 mutex_unlock(&sev_bitmap_lock);
174                 ret = -EBUSY;
175                 goto e_uncharge;
176         }
177
178         __set_bit(asid, sev_asid_bitmap);
179
180         mutex_unlock(&sev_bitmap_lock);
181
182         return asid;
183 e_uncharge:
184         sev_misc_cg_uncharge(sev);
185         put_misc_cg(sev->misc_cg);
186         sev->misc_cg = NULL;
187         return ret;
188 }
189
190 static int sev_get_asid(struct kvm *kvm)
191 {
192         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
193
194         return sev->asid;
195 }
196
197 static void sev_asid_free(struct kvm_sev_info *sev)
198 {
199         struct svm_cpu_data *sd;
200         int cpu;
201
202         mutex_lock(&sev_bitmap_lock);
203
204         __set_bit(sev->asid, sev_reclaim_asid_bitmap);
205
206         for_each_possible_cpu(cpu) {
207                 sd = per_cpu_ptr(&svm_data, cpu);
208                 sd->sev_vmcbs[sev->asid] = NULL;
209         }
210
211         mutex_unlock(&sev_bitmap_lock);
212
213         sev_misc_cg_uncharge(sev);
214         put_misc_cg(sev->misc_cg);
215         sev->misc_cg = NULL;
216 }
217
218 static void sev_decommission(unsigned int handle)
219 {
220         struct sev_data_decommission decommission;
221
222         if (!handle)
223                 return;
224
225         decommission.handle = handle;
226         sev_guest_decommission(&decommission, NULL);
227 }
228
229 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
230 {
231         struct sev_data_deactivate deactivate;
232
233         if (!handle)
234                 return;
235
236         deactivate.handle = handle;
237
238         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
239         down_read(&sev_deactivate_lock);
240         sev_guest_deactivate(&deactivate, NULL);
241         up_read(&sev_deactivate_lock);
242
243         sev_decommission(handle);
244 }
245
246 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
247 {
248         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
249         struct sev_platform_init_args init_args = {0};
250         int asid, ret;
251
252         if (kvm->created_vcpus)
253                 return -EINVAL;
254
255         ret = -EBUSY;
256         if (unlikely(sev->active))
257                 return ret;
258
259         sev->active = true;
260         sev->es_active = argp->id == KVM_SEV_ES_INIT;
261         asid = sev_asid_new(sev);
262         if (asid < 0)
263                 goto e_no_asid;
264         sev->asid = asid;
265
266         init_args.probe = false;
267         ret = sev_platform_init(&init_args);
268         if (ret)
269                 goto e_free;
270
271         INIT_LIST_HEAD(&sev->regions_list);
272         INIT_LIST_HEAD(&sev->mirror_vms);
273
274         kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
275
276         return 0;
277
278 e_free:
279         argp->error = init_args.error;
280         sev_asid_free(sev);
281         sev->asid = 0;
282 e_no_asid:
283         sev->es_active = false;
284         sev->active = false;
285         return ret;
286 }
287
288 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
289 {
290         struct sev_data_activate activate;
291         int asid = sev_get_asid(kvm);
292         int ret;
293
294         /* activate ASID on the given handle */
295         activate.handle = handle;
296         activate.asid   = asid;
297         ret = sev_guest_activate(&activate, error);
298
299         return ret;
300 }
301
302 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
303 {
304         struct fd f;
305         int ret;
306
307         f = fdget(fd);
308         if (!f.file)
309                 return -EBADF;
310
311         ret = sev_issue_cmd_external_user(f.file, id, data, error);
312
313         fdput(f);
314         return ret;
315 }
316
317 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
318 {
319         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
320
321         return __sev_issue_cmd(sev->fd, id, data, error);
322 }
323
324 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
325 {
326         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
327         struct sev_data_launch_start start;
328         struct kvm_sev_launch_start params;
329         void *dh_blob, *session_blob;
330         int *error = &argp->error;
331         int ret;
332
333         if (!sev_guest(kvm))
334                 return -ENOTTY;
335
336         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
337                 return -EFAULT;
338
339         memset(&start, 0, sizeof(start));
340
341         dh_blob = NULL;
342         if (params.dh_uaddr) {
343                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
344                 if (IS_ERR(dh_blob))
345                         return PTR_ERR(dh_blob);
346
347                 start.dh_cert_address = __sme_set(__pa(dh_blob));
348                 start.dh_cert_len = params.dh_len;
349         }
350
351         session_blob = NULL;
352         if (params.session_uaddr) {
353                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
354                 if (IS_ERR(session_blob)) {
355                         ret = PTR_ERR(session_blob);
356                         goto e_free_dh;
357                 }
358
359                 start.session_address = __sme_set(__pa(session_blob));
360                 start.session_len = params.session_len;
361         }
362
363         start.handle = params.handle;
364         start.policy = params.policy;
365
366         /* create memory encryption context */
367         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
368         if (ret)
369                 goto e_free_session;
370
371         /* Bind ASID to this guest */
372         ret = sev_bind_asid(kvm, start.handle, error);
373         if (ret) {
374                 sev_decommission(start.handle);
375                 goto e_free_session;
376         }
377
378         /* return handle to userspace */
379         params.handle = start.handle;
380         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
381                 sev_unbind_asid(kvm, start.handle);
382                 ret = -EFAULT;
383                 goto e_free_session;
384         }
385
386         sev->handle = start.handle;
387         sev->fd = argp->sev_fd;
388
389 e_free_session:
390         kfree(session_blob);
391 e_free_dh:
392         kfree(dh_blob);
393         return ret;
394 }
395
396 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
397                                     unsigned long ulen, unsigned long *n,
398                                     int write)
399 {
400         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
401         unsigned long npages, size;
402         int npinned;
403         unsigned long locked, lock_limit;
404         struct page **pages;
405         unsigned long first, last;
406         int ret;
407
408         lockdep_assert_held(&kvm->lock);
409
410         if (ulen == 0 || uaddr + ulen < uaddr)
411                 return ERR_PTR(-EINVAL);
412
413         /* Calculate number of pages. */
414         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
415         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
416         npages = (last - first + 1);
417
418         locked = sev->pages_locked + npages;
419         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
420         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
421                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
422                 return ERR_PTR(-ENOMEM);
423         }
424
425         if (WARN_ON_ONCE(npages > INT_MAX))
426                 return ERR_PTR(-EINVAL);
427
428         /* Avoid using vmalloc for smaller buffers. */
429         size = npages * sizeof(struct page *);
430         if (size > PAGE_SIZE)
431                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
432         else
433                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
434
435         if (!pages)
436                 return ERR_PTR(-ENOMEM);
437
438         /* Pin the user virtual address. */
439         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
440         if (npinned != npages) {
441                 pr_err("SEV: Failure locking %lu pages.\n", npages);
442                 ret = -ENOMEM;
443                 goto err;
444         }
445
446         *n = npages;
447         sev->pages_locked = locked;
448
449         return pages;
450
451 err:
452         if (npinned > 0)
453                 unpin_user_pages(pages, npinned);
454
455         kvfree(pages);
456         return ERR_PTR(ret);
457 }
458
459 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
460                              unsigned long npages)
461 {
462         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
463
464         unpin_user_pages(pages, npages);
465         kvfree(pages);
466         sev->pages_locked -= npages;
467 }
468
469 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
470 {
471         uint8_t *page_virtual;
472         unsigned long i;
473
474         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
475             pages == NULL)
476                 return;
477
478         for (i = 0; i < npages; i++) {
479                 page_virtual = kmap_local_page(pages[i]);
480                 clflush_cache_range(page_virtual, PAGE_SIZE);
481                 kunmap_local(page_virtual);
482                 cond_resched();
483         }
484 }
485
486 static unsigned long get_num_contig_pages(unsigned long idx,
487                                 struct page **inpages, unsigned long npages)
488 {
489         unsigned long paddr, next_paddr;
490         unsigned long i = idx + 1, pages = 1;
491
492         /* find the number of contiguous pages starting from idx */
493         paddr = __sme_page_pa(inpages[idx]);
494         while (i < npages) {
495                 next_paddr = __sme_page_pa(inpages[i++]);
496                 if ((paddr + PAGE_SIZE) == next_paddr) {
497                         pages++;
498                         paddr = next_paddr;
499                         continue;
500                 }
501                 break;
502         }
503
504         return pages;
505 }
506
507 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
508 {
509         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
510         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
511         struct kvm_sev_launch_update_data params;
512         struct sev_data_launch_update_data data;
513         struct page **inpages;
514         int ret;
515
516         if (!sev_guest(kvm))
517                 return -ENOTTY;
518
519         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
520                 return -EFAULT;
521
522         vaddr = params.uaddr;
523         size = params.len;
524         vaddr_end = vaddr + size;
525
526         /* Lock the user memory. */
527         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
528         if (IS_ERR(inpages))
529                 return PTR_ERR(inpages);
530
531         /*
532          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
533          * place; the cache may contain the data that was written unencrypted.
534          */
535         sev_clflush_pages(inpages, npages);
536
537         data.reserved = 0;
538         data.handle = sev->handle;
539
540         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
541                 int offset, len;
542
543                 /*
544                  * If the user buffer is not page-aligned, calculate the offset
545                  * within the page.
546                  */
547                 offset = vaddr & (PAGE_SIZE - 1);
548
549                 /* Calculate the number of pages that can be encrypted in one go. */
550                 pages = get_num_contig_pages(i, inpages, npages);
551
552                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
553
554                 data.len = len;
555                 data.address = __sme_page_pa(inpages[i]) + offset;
556                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
557                 if (ret)
558                         goto e_unpin;
559
560                 size -= len;
561                 next_vaddr = vaddr + len;
562         }
563
564 e_unpin:
565         /* content of memory is updated, mark pages dirty */
566         for (i = 0; i < npages; i++) {
567                 set_page_dirty_lock(inpages[i]);
568                 mark_page_accessed(inpages[i]);
569         }
570         /* unlock the user pages */
571         sev_unpin_memory(kvm, inpages, npages);
572         return ret;
573 }
574
575 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
576 {
577         struct sev_es_save_area *save = svm->sev_es.vmsa;
578
579         /* Check some debug related fields before encrypting the VMSA */
580         if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
581                 return -EINVAL;
582
583         /*
584          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
585          * the traditional VMSA that is part of the VMCB. Copy the
586          * traditional VMSA as it has been built so far (in prep
587          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
588          */
589         memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
590
591         /* Sync registgers */
592         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
593         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
594         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
595         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
596         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
597         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
598         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
599         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
600 #ifdef CONFIG_X86_64
601         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
602         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
603         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
604         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
605         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
606         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
607         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
608         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
609 #endif
610         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
611
612         /* Sync some non-GPR registers before encrypting */
613         save->xcr0 = svm->vcpu.arch.xcr0;
614         save->pkru = svm->vcpu.arch.pkru;
615         save->xss  = svm->vcpu.arch.ia32_xss;
616         save->dr6  = svm->vcpu.arch.dr6;
617
618         if (sev_es_debug_swap_enabled) {
619                 save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP;
620                 pr_warn_once("Enabling DebugSwap with KVM_SEV_ES_INIT. "
621                              "This will not work starting with Linux 6.10\n");
622         }
623
624         pr_debug("Virtual Machine Save Area (VMSA):\n");
625         print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
626
627         return 0;
628 }
629
630 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
631                                     int *error)
632 {
633         struct sev_data_launch_update_vmsa vmsa;
634         struct vcpu_svm *svm = to_svm(vcpu);
635         int ret;
636
637         if (vcpu->guest_debug) {
638                 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
639                 return -EINVAL;
640         }
641
642         /* Perform some pre-encryption checks against the VMSA */
643         ret = sev_es_sync_vmsa(svm);
644         if (ret)
645                 return ret;
646
647         /*
648          * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
649          * the VMSA memory content (i.e it will write the same memory region
650          * with the guest's key), so invalidate it first.
651          */
652         clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
653
654         vmsa.reserved = 0;
655         vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
656         vmsa.address = __sme_pa(svm->sev_es.vmsa);
657         vmsa.len = PAGE_SIZE;
658         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
659         if (ret)
660           return ret;
661
662         vcpu->arch.guest_state_protected = true;
663         return 0;
664 }
665
666 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
667 {
668         struct kvm_vcpu *vcpu;
669         unsigned long i;
670         int ret;
671
672         if (!sev_es_guest(kvm))
673                 return -ENOTTY;
674
675         kvm_for_each_vcpu(i, vcpu, kvm) {
676                 ret = mutex_lock_killable(&vcpu->mutex);
677                 if (ret)
678                         return ret;
679
680                 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
681
682                 mutex_unlock(&vcpu->mutex);
683                 if (ret)
684                         return ret;
685         }
686
687         return 0;
688 }
689
690 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
691 {
692         void __user *measure = (void __user *)(uintptr_t)argp->data;
693         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
694         struct sev_data_launch_measure data;
695         struct kvm_sev_launch_measure params;
696         void __user *p = NULL;
697         void *blob = NULL;
698         int ret;
699
700         if (!sev_guest(kvm))
701                 return -ENOTTY;
702
703         if (copy_from_user(&params, measure, sizeof(params)))
704                 return -EFAULT;
705
706         memset(&data, 0, sizeof(data));
707
708         /* User wants to query the blob length */
709         if (!params.len)
710                 goto cmd;
711
712         p = (void __user *)(uintptr_t)params.uaddr;
713         if (p) {
714                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
715                         return -EINVAL;
716
717                 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
718                 if (!blob)
719                         return -ENOMEM;
720
721                 data.address = __psp_pa(blob);
722                 data.len = params.len;
723         }
724
725 cmd:
726         data.handle = sev->handle;
727         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
728
729         /*
730          * If we query the session length, FW responded with expected data.
731          */
732         if (!params.len)
733                 goto done;
734
735         if (ret)
736                 goto e_free_blob;
737
738         if (blob) {
739                 if (copy_to_user(p, blob, params.len))
740                         ret = -EFAULT;
741         }
742
743 done:
744         params.len = data.len;
745         if (copy_to_user(measure, &params, sizeof(params)))
746                 ret = -EFAULT;
747 e_free_blob:
748         kfree(blob);
749         return ret;
750 }
751
752 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
753 {
754         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
755         struct sev_data_launch_finish data;
756
757         if (!sev_guest(kvm))
758                 return -ENOTTY;
759
760         data.handle = sev->handle;
761         return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
762 }
763
764 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
765 {
766         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
767         struct kvm_sev_guest_status params;
768         struct sev_data_guest_status data;
769         int ret;
770
771         if (!sev_guest(kvm))
772                 return -ENOTTY;
773
774         memset(&data, 0, sizeof(data));
775
776         data.handle = sev->handle;
777         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
778         if (ret)
779                 return ret;
780
781         params.policy = data.policy;
782         params.state = data.state;
783         params.handle = data.handle;
784
785         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
786                 ret = -EFAULT;
787
788         return ret;
789 }
790
791 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
792                                unsigned long dst, int size,
793                                int *error, bool enc)
794 {
795         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
796         struct sev_data_dbg data;
797
798         data.reserved = 0;
799         data.handle = sev->handle;
800         data.dst_addr = dst;
801         data.src_addr = src;
802         data.len = size;
803
804         return sev_issue_cmd(kvm,
805                              enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
806                              &data, error);
807 }
808
809 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
810                              unsigned long dst_paddr, int sz, int *err)
811 {
812         int offset;
813
814         /*
815          * Its safe to read more than we are asked, caller should ensure that
816          * destination has enough space.
817          */
818         offset = src_paddr & 15;
819         src_paddr = round_down(src_paddr, 16);
820         sz = round_up(sz + offset, 16);
821
822         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
823 }
824
825 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
826                                   void __user *dst_uaddr,
827                                   unsigned long dst_paddr,
828                                   int size, int *err)
829 {
830         struct page *tpage = NULL;
831         int ret, offset;
832
833         /* if inputs are not 16-byte then use intermediate buffer */
834         if (!IS_ALIGNED(dst_paddr, 16) ||
835             !IS_ALIGNED(paddr,     16) ||
836             !IS_ALIGNED(size,      16)) {
837                 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
838                 if (!tpage)
839                         return -ENOMEM;
840
841                 dst_paddr = __sme_page_pa(tpage);
842         }
843
844         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
845         if (ret)
846                 goto e_free;
847
848         if (tpage) {
849                 offset = paddr & 15;
850                 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
851                         ret = -EFAULT;
852         }
853
854 e_free:
855         if (tpage)
856                 __free_page(tpage);
857
858         return ret;
859 }
860
861 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
862                                   void __user *vaddr,
863                                   unsigned long dst_paddr,
864                                   void __user *dst_vaddr,
865                                   int size, int *error)
866 {
867         struct page *src_tpage = NULL;
868         struct page *dst_tpage = NULL;
869         int ret, len = size;
870
871         /* If source buffer is not aligned then use an intermediate buffer */
872         if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
873                 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
874                 if (!src_tpage)
875                         return -ENOMEM;
876
877                 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
878                         __free_page(src_tpage);
879                         return -EFAULT;
880                 }
881
882                 paddr = __sme_page_pa(src_tpage);
883         }
884
885         /*
886          *  If destination buffer or length is not aligned then do read-modify-write:
887          *   - decrypt destination in an intermediate buffer
888          *   - copy the source buffer in an intermediate buffer
889          *   - use the intermediate buffer as source buffer
890          */
891         if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
892                 int dst_offset;
893
894                 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
895                 if (!dst_tpage) {
896                         ret = -ENOMEM;
897                         goto e_free;
898                 }
899
900                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
901                                         __sme_page_pa(dst_tpage), size, error);
902                 if (ret)
903                         goto e_free;
904
905                 /*
906                  *  If source is kernel buffer then use memcpy() otherwise
907                  *  copy_from_user().
908                  */
909                 dst_offset = dst_paddr & 15;
910
911                 if (src_tpage)
912                         memcpy(page_address(dst_tpage) + dst_offset,
913                                page_address(src_tpage), size);
914                 else {
915                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
916                                            vaddr, size)) {
917                                 ret = -EFAULT;
918                                 goto e_free;
919                         }
920                 }
921
922                 paddr = __sme_page_pa(dst_tpage);
923                 dst_paddr = round_down(dst_paddr, 16);
924                 len = round_up(size, 16);
925         }
926
927         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
928
929 e_free:
930         if (src_tpage)
931                 __free_page(src_tpage);
932         if (dst_tpage)
933                 __free_page(dst_tpage);
934         return ret;
935 }
936
937 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
938 {
939         unsigned long vaddr, vaddr_end, next_vaddr;
940         unsigned long dst_vaddr;
941         struct page **src_p, **dst_p;
942         struct kvm_sev_dbg debug;
943         unsigned long n;
944         unsigned int size;
945         int ret;
946
947         if (!sev_guest(kvm))
948                 return -ENOTTY;
949
950         if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
951                 return -EFAULT;
952
953         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
954                 return -EINVAL;
955         if (!debug.dst_uaddr)
956                 return -EINVAL;
957
958         vaddr = debug.src_uaddr;
959         size = debug.len;
960         vaddr_end = vaddr + size;
961         dst_vaddr = debug.dst_uaddr;
962
963         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
964                 int len, s_off, d_off;
965
966                 /* lock userspace source and destination page */
967                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
968                 if (IS_ERR(src_p))
969                         return PTR_ERR(src_p);
970
971                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
972                 if (IS_ERR(dst_p)) {
973                         sev_unpin_memory(kvm, src_p, n);
974                         return PTR_ERR(dst_p);
975                 }
976
977                 /*
978                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
979                  * the pages; flush the destination too so that future accesses do not
980                  * see stale data.
981                  */
982                 sev_clflush_pages(src_p, 1);
983                 sev_clflush_pages(dst_p, 1);
984
985                 /*
986                  * Since user buffer may not be page aligned, calculate the
987                  * offset within the page.
988                  */
989                 s_off = vaddr & ~PAGE_MASK;
990                 d_off = dst_vaddr & ~PAGE_MASK;
991                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
992
993                 if (dec)
994                         ret = __sev_dbg_decrypt_user(kvm,
995                                                      __sme_page_pa(src_p[0]) + s_off,
996                                                      (void __user *)dst_vaddr,
997                                                      __sme_page_pa(dst_p[0]) + d_off,
998                                                      len, &argp->error);
999                 else
1000                         ret = __sev_dbg_encrypt_user(kvm,
1001                                                      __sme_page_pa(src_p[0]) + s_off,
1002                                                      (void __user *)vaddr,
1003                                                      __sme_page_pa(dst_p[0]) + d_off,
1004                                                      (void __user *)dst_vaddr,
1005                                                      len, &argp->error);
1006
1007                 sev_unpin_memory(kvm, src_p, n);
1008                 sev_unpin_memory(kvm, dst_p, n);
1009
1010                 if (ret)
1011                         goto err;
1012
1013                 next_vaddr = vaddr + len;
1014                 dst_vaddr = dst_vaddr + len;
1015                 size -= len;
1016         }
1017 err:
1018         return ret;
1019 }
1020
1021 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1022 {
1023         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1024         struct sev_data_launch_secret data;
1025         struct kvm_sev_launch_secret params;
1026         struct page **pages;
1027         void *blob, *hdr;
1028         unsigned long n, i;
1029         int ret, offset;
1030
1031         if (!sev_guest(kvm))
1032                 return -ENOTTY;
1033
1034         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1035                 return -EFAULT;
1036
1037         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1038         if (IS_ERR(pages))
1039                 return PTR_ERR(pages);
1040
1041         /*
1042          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1043          * place; the cache may contain the data that was written unencrypted.
1044          */
1045         sev_clflush_pages(pages, n);
1046
1047         /*
1048          * The secret must be copied into contiguous memory region, lets verify
1049          * that userspace memory pages are contiguous before we issue command.
1050          */
1051         if (get_num_contig_pages(0, pages, n) != n) {
1052                 ret = -EINVAL;
1053                 goto e_unpin_memory;
1054         }
1055
1056         memset(&data, 0, sizeof(data));
1057
1058         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1059         data.guest_address = __sme_page_pa(pages[0]) + offset;
1060         data.guest_len = params.guest_len;
1061
1062         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1063         if (IS_ERR(blob)) {
1064                 ret = PTR_ERR(blob);
1065                 goto e_unpin_memory;
1066         }
1067
1068         data.trans_address = __psp_pa(blob);
1069         data.trans_len = params.trans_len;
1070
1071         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1072         if (IS_ERR(hdr)) {
1073                 ret = PTR_ERR(hdr);
1074                 goto e_free_blob;
1075         }
1076         data.hdr_address = __psp_pa(hdr);
1077         data.hdr_len = params.hdr_len;
1078
1079         data.handle = sev->handle;
1080         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1081
1082         kfree(hdr);
1083
1084 e_free_blob:
1085         kfree(blob);
1086 e_unpin_memory:
1087         /* content of memory is updated, mark pages dirty */
1088         for (i = 0; i < n; i++) {
1089                 set_page_dirty_lock(pages[i]);
1090                 mark_page_accessed(pages[i]);
1091         }
1092         sev_unpin_memory(kvm, pages, n);
1093         return ret;
1094 }
1095
1096 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1097 {
1098         void __user *report = (void __user *)(uintptr_t)argp->data;
1099         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1100         struct sev_data_attestation_report data;
1101         struct kvm_sev_attestation_report params;
1102         void __user *p;
1103         void *blob = NULL;
1104         int ret;
1105
1106         if (!sev_guest(kvm))
1107                 return -ENOTTY;
1108
1109         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1110                 return -EFAULT;
1111
1112         memset(&data, 0, sizeof(data));
1113
1114         /* User wants to query the blob length */
1115         if (!params.len)
1116                 goto cmd;
1117
1118         p = (void __user *)(uintptr_t)params.uaddr;
1119         if (p) {
1120                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1121                         return -EINVAL;
1122
1123                 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1124                 if (!blob)
1125                         return -ENOMEM;
1126
1127                 data.address = __psp_pa(blob);
1128                 data.len = params.len;
1129                 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1130         }
1131 cmd:
1132         data.handle = sev->handle;
1133         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1134         /*
1135          * If we query the session length, FW responded with expected data.
1136          */
1137         if (!params.len)
1138                 goto done;
1139
1140         if (ret)
1141                 goto e_free_blob;
1142
1143         if (blob) {
1144                 if (copy_to_user(p, blob, params.len))
1145                         ret = -EFAULT;
1146         }
1147
1148 done:
1149         params.len = data.len;
1150         if (copy_to_user(report, &params, sizeof(params)))
1151                 ret = -EFAULT;
1152 e_free_blob:
1153         kfree(blob);
1154         return ret;
1155 }
1156
1157 /* Userspace wants to query session length. */
1158 static int
1159 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1160                                       struct kvm_sev_send_start *params)
1161 {
1162         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1163         struct sev_data_send_start data;
1164         int ret;
1165
1166         memset(&data, 0, sizeof(data));
1167         data.handle = sev->handle;
1168         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1169
1170         params->session_len = data.session_len;
1171         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1172                                 sizeof(struct kvm_sev_send_start)))
1173                 ret = -EFAULT;
1174
1175         return ret;
1176 }
1177
1178 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1179 {
1180         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1181         struct sev_data_send_start data;
1182         struct kvm_sev_send_start params;
1183         void *amd_certs, *session_data;
1184         void *pdh_cert, *plat_certs;
1185         int ret;
1186
1187         if (!sev_guest(kvm))
1188                 return -ENOTTY;
1189
1190         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1191                                 sizeof(struct kvm_sev_send_start)))
1192                 return -EFAULT;
1193
1194         /* if session_len is zero, userspace wants to query the session length */
1195         if (!params.session_len)
1196                 return __sev_send_start_query_session_length(kvm, argp,
1197                                 &params);
1198
1199         /* some sanity checks */
1200         if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1201             !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1202                 return -EINVAL;
1203
1204         /* allocate the memory to hold the session data blob */
1205         session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1206         if (!session_data)
1207                 return -ENOMEM;
1208
1209         /* copy the certificate blobs from userspace */
1210         pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1211                                 params.pdh_cert_len);
1212         if (IS_ERR(pdh_cert)) {
1213                 ret = PTR_ERR(pdh_cert);
1214                 goto e_free_session;
1215         }
1216
1217         plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1218                                 params.plat_certs_len);
1219         if (IS_ERR(plat_certs)) {
1220                 ret = PTR_ERR(plat_certs);
1221                 goto e_free_pdh;
1222         }
1223
1224         amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1225                                 params.amd_certs_len);
1226         if (IS_ERR(amd_certs)) {
1227                 ret = PTR_ERR(amd_certs);
1228                 goto e_free_plat_cert;
1229         }
1230
1231         /* populate the FW SEND_START field with system physical address */
1232         memset(&data, 0, sizeof(data));
1233         data.pdh_cert_address = __psp_pa(pdh_cert);
1234         data.pdh_cert_len = params.pdh_cert_len;
1235         data.plat_certs_address = __psp_pa(plat_certs);
1236         data.plat_certs_len = params.plat_certs_len;
1237         data.amd_certs_address = __psp_pa(amd_certs);
1238         data.amd_certs_len = params.amd_certs_len;
1239         data.session_address = __psp_pa(session_data);
1240         data.session_len = params.session_len;
1241         data.handle = sev->handle;
1242
1243         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1244
1245         if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1246                         session_data, params.session_len)) {
1247                 ret = -EFAULT;
1248                 goto e_free_amd_cert;
1249         }
1250
1251         params.policy = data.policy;
1252         params.session_len = data.session_len;
1253         if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1254                                 sizeof(struct kvm_sev_send_start)))
1255                 ret = -EFAULT;
1256
1257 e_free_amd_cert:
1258         kfree(amd_certs);
1259 e_free_plat_cert:
1260         kfree(plat_certs);
1261 e_free_pdh:
1262         kfree(pdh_cert);
1263 e_free_session:
1264         kfree(session_data);
1265         return ret;
1266 }
1267
1268 /* Userspace wants to query either header or trans length. */
1269 static int
1270 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1271                                      struct kvm_sev_send_update_data *params)
1272 {
1273         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1274         struct sev_data_send_update_data data;
1275         int ret;
1276
1277         memset(&data, 0, sizeof(data));
1278         data.handle = sev->handle;
1279         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1280
1281         params->hdr_len = data.hdr_len;
1282         params->trans_len = data.trans_len;
1283
1284         if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1285                          sizeof(struct kvm_sev_send_update_data)))
1286                 ret = -EFAULT;
1287
1288         return ret;
1289 }
1290
1291 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1292 {
1293         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1294         struct sev_data_send_update_data data;
1295         struct kvm_sev_send_update_data params;
1296         void *hdr, *trans_data;
1297         struct page **guest_page;
1298         unsigned long n;
1299         int ret, offset;
1300
1301         if (!sev_guest(kvm))
1302                 return -ENOTTY;
1303
1304         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1305                         sizeof(struct kvm_sev_send_update_data)))
1306                 return -EFAULT;
1307
1308         /* userspace wants to query either header or trans length */
1309         if (!params.trans_len || !params.hdr_len)
1310                 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1311
1312         if (!params.trans_uaddr || !params.guest_uaddr ||
1313             !params.guest_len || !params.hdr_uaddr)
1314                 return -EINVAL;
1315
1316         /* Check if we are crossing the page boundary */
1317         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1318         if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1319                 return -EINVAL;
1320
1321         /* Pin guest memory */
1322         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1323                                     PAGE_SIZE, &n, 0);
1324         if (IS_ERR(guest_page))
1325                 return PTR_ERR(guest_page);
1326
1327         /* allocate memory for header and transport buffer */
1328         ret = -ENOMEM;
1329         hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1330         if (!hdr)
1331                 goto e_unpin;
1332
1333         trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1334         if (!trans_data)
1335                 goto e_free_hdr;
1336
1337         memset(&data, 0, sizeof(data));
1338         data.hdr_address = __psp_pa(hdr);
1339         data.hdr_len = params.hdr_len;
1340         data.trans_address = __psp_pa(trans_data);
1341         data.trans_len = params.trans_len;
1342
1343         /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1344         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1345         data.guest_address |= sev_me_mask;
1346         data.guest_len = params.guest_len;
1347         data.handle = sev->handle;
1348
1349         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1350
1351         if (ret)
1352                 goto e_free_trans_data;
1353
1354         /* copy transport buffer to user space */
1355         if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1356                          trans_data, params.trans_len)) {
1357                 ret = -EFAULT;
1358                 goto e_free_trans_data;
1359         }
1360
1361         /* Copy packet header to userspace. */
1362         if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1363                          params.hdr_len))
1364                 ret = -EFAULT;
1365
1366 e_free_trans_data:
1367         kfree(trans_data);
1368 e_free_hdr:
1369         kfree(hdr);
1370 e_unpin:
1371         sev_unpin_memory(kvm, guest_page, n);
1372
1373         return ret;
1374 }
1375
1376 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1377 {
1378         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1379         struct sev_data_send_finish data;
1380
1381         if (!sev_guest(kvm))
1382                 return -ENOTTY;
1383
1384         data.handle = sev->handle;
1385         return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1386 }
1387
1388 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1389 {
1390         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1391         struct sev_data_send_cancel data;
1392
1393         if (!sev_guest(kvm))
1394                 return -ENOTTY;
1395
1396         data.handle = sev->handle;
1397         return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1398 }
1399
1400 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1401 {
1402         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1403         struct sev_data_receive_start start;
1404         struct kvm_sev_receive_start params;
1405         int *error = &argp->error;
1406         void *session_data;
1407         void *pdh_data;
1408         int ret;
1409
1410         if (!sev_guest(kvm))
1411                 return -ENOTTY;
1412
1413         /* Get parameter from the userspace */
1414         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1415                         sizeof(struct kvm_sev_receive_start)))
1416                 return -EFAULT;
1417
1418         /* some sanity checks */
1419         if (!params.pdh_uaddr || !params.pdh_len ||
1420             !params.session_uaddr || !params.session_len)
1421                 return -EINVAL;
1422
1423         pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1424         if (IS_ERR(pdh_data))
1425                 return PTR_ERR(pdh_data);
1426
1427         session_data = psp_copy_user_blob(params.session_uaddr,
1428                         params.session_len);
1429         if (IS_ERR(session_data)) {
1430                 ret = PTR_ERR(session_data);
1431                 goto e_free_pdh;
1432         }
1433
1434         memset(&start, 0, sizeof(start));
1435         start.handle = params.handle;
1436         start.policy = params.policy;
1437         start.pdh_cert_address = __psp_pa(pdh_data);
1438         start.pdh_cert_len = params.pdh_len;
1439         start.session_address = __psp_pa(session_data);
1440         start.session_len = params.session_len;
1441
1442         /* create memory encryption context */
1443         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1444                                 error);
1445         if (ret)
1446                 goto e_free_session;
1447
1448         /* Bind ASID to this guest */
1449         ret = sev_bind_asid(kvm, start.handle, error);
1450         if (ret) {
1451                 sev_decommission(start.handle);
1452                 goto e_free_session;
1453         }
1454
1455         params.handle = start.handle;
1456         if (copy_to_user((void __user *)(uintptr_t)argp->data,
1457                          &params, sizeof(struct kvm_sev_receive_start))) {
1458                 ret = -EFAULT;
1459                 sev_unbind_asid(kvm, start.handle);
1460                 goto e_free_session;
1461         }
1462
1463         sev->handle = start.handle;
1464         sev->fd = argp->sev_fd;
1465
1466 e_free_session:
1467         kfree(session_data);
1468 e_free_pdh:
1469         kfree(pdh_data);
1470
1471         return ret;
1472 }
1473
1474 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1475 {
1476         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1477         struct kvm_sev_receive_update_data params;
1478         struct sev_data_receive_update_data data;
1479         void *hdr = NULL, *trans = NULL;
1480         struct page **guest_page;
1481         unsigned long n;
1482         int ret, offset;
1483
1484         if (!sev_guest(kvm))
1485                 return -EINVAL;
1486
1487         if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1488                         sizeof(struct kvm_sev_receive_update_data)))
1489                 return -EFAULT;
1490
1491         if (!params.hdr_uaddr || !params.hdr_len ||
1492             !params.guest_uaddr || !params.guest_len ||
1493             !params.trans_uaddr || !params.trans_len)
1494                 return -EINVAL;
1495
1496         /* Check if we are crossing the page boundary */
1497         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1498         if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1499                 return -EINVAL;
1500
1501         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1502         if (IS_ERR(hdr))
1503                 return PTR_ERR(hdr);
1504
1505         trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1506         if (IS_ERR(trans)) {
1507                 ret = PTR_ERR(trans);
1508                 goto e_free_hdr;
1509         }
1510
1511         memset(&data, 0, sizeof(data));
1512         data.hdr_address = __psp_pa(hdr);
1513         data.hdr_len = params.hdr_len;
1514         data.trans_address = __psp_pa(trans);
1515         data.trans_len = params.trans_len;
1516
1517         /* Pin guest memory */
1518         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1519                                     PAGE_SIZE, &n, 1);
1520         if (IS_ERR(guest_page)) {
1521                 ret = PTR_ERR(guest_page);
1522                 goto e_free_trans;
1523         }
1524
1525         /*
1526          * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1527          * encrypts the written data with the guest's key, and the cache may
1528          * contain dirty, unencrypted data.
1529          */
1530         sev_clflush_pages(guest_page, n);
1531
1532         /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1533         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1534         data.guest_address |= sev_me_mask;
1535         data.guest_len = params.guest_len;
1536         data.handle = sev->handle;
1537
1538         ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1539                                 &argp->error);
1540
1541         sev_unpin_memory(kvm, guest_page, n);
1542
1543 e_free_trans:
1544         kfree(trans);
1545 e_free_hdr:
1546         kfree(hdr);
1547
1548         return ret;
1549 }
1550
1551 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1552 {
1553         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1554         struct sev_data_receive_finish data;
1555
1556         if (!sev_guest(kvm))
1557                 return -ENOTTY;
1558
1559         data.handle = sev->handle;
1560         return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1561 }
1562
1563 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1564 {
1565         /*
1566          * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1567          * active mirror VMs. Also allow the debugging and status commands.
1568          */
1569         if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1570             cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1571             cmd_id == KVM_SEV_DBG_ENCRYPT)
1572                 return true;
1573
1574         return false;
1575 }
1576
1577 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1578 {
1579         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1580         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1581         int r = -EBUSY;
1582
1583         if (dst_kvm == src_kvm)
1584                 return -EINVAL;
1585
1586         /*
1587          * Bail if these VMs are already involved in a migration to avoid
1588          * deadlock between two VMs trying to migrate to/from each other.
1589          */
1590         if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1591                 return -EBUSY;
1592
1593         if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1594                 goto release_dst;
1595
1596         r = -EINTR;
1597         if (mutex_lock_killable(&dst_kvm->lock))
1598                 goto release_src;
1599         if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1600                 goto unlock_dst;
1601         return 0;
1602
1603 unlock_dst:
1604         mutex_unlock(&dst_kvm->lock);
1605 release_src:
1606         atomic_set_release(&src_sev->migration_in_progress, 0);
1607 release_dst:
1608         atomic_set_release(&dst_sev->migration_in_progress, 0);
1609         return r;
1610 }
1611
1612 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1613 {
1614         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1615         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1616
1617         mutex_unlock(&dst_kvm->lock);
1618         mutex_unlock(&src_kvm->lock);
1619         atomic_set_release(&dst_sev->migration_in_progress, 0);
1620         atomic_set_release(&src_sev->migration_in_progress, 0);
1621 }
1622
1623 /* vCPU mutex subclasses.  */
1624 enum sev_migration_role {
1625         SEV_MIGRATION_SOURCE = 0,
1626         SEV_MIGRATION_TARGET,
1627         SEV_NR_MIGRATION_ROLES,
1628 };
1629
1630 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1631                                         enum sev_migration_role role)
1632 {
1633         struct kvm_vcpu *vcpu;
1634         unsigned long i, j;
1635
1636         kvm_for_each_vcpu(i, vcpu, kvm) {
1637                 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1638                         goto out_unlock;
1639
1640 #ifdef CONFIG_PROVE_LOCKING
1641                 if (!i)
1642                         /*
1643                          * Reset the role to one that avoids colliding with
1644                          * the role used for the first vcpu mutex.
1645                          */
1646                         role = SEV_NR_MIGRATION_ROLES;
1647                 else
1648                         mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1649 #endif
1650         }
1651
1652         return 0;
1653
1654 out_unlock:
1655
1656         kvm_for_each_vcpu(j, vcpu, kvm) {
1657                 if (i == j)
1658                         break;
1659
1660 #ifdef CONFIG_PROVE_LOCKING
1661                 if (j)
1662                         mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1663 #endif
1664
1665                 mutex_unlock(&vcpu->mutex);
1666         }
1667         return -EINTR;
1668 }
1669
1670 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1671 {
1672         struct kvm_vcpu *vcpu;
1673         unsigned long i;
1674         bool first = true;
1675
1676         kvm_for_each_vcpu(i, vcpu, kvm) {
1677                 if (first)
1678                         first = false;
1679                 else
1680                         mutex_acquire(&vcpu->mutex.dep_map,
1681                                       SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1682
1683                 mutex_unlock(&vcpu->mutex);
1684         }
1685 }
1686
1687 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1688 {
1689         struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1690         struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1691         struct kvm_vcpu *dst_vcpu, *src_vcpu;
1692         struct vcpu_svm *dst_svm, *src_svm;
1693         struct kvm_sev_info *mirror;
1694         unsigned long i;
1695
1696         dst->active = true;
1697         dst->asid = src->asid;
1698         dst->handle = src->handle;
1699         dst->pages_locked = src->pages_locked;
1700         dst->enc_context_owner = src->enc_context_owner;
1701         dst->es_active = src->es_active;
1702
1703         src->asid = 0;
1704         src->active = false;
1705         src->handle = 0;
1706         src->pages_locked = 0;
1707         src->enc_context_owner = NULL;
1708         src->es_active = false;
1709
1710         list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1711
1712         /*
1713          * If this VM has mirrors, "transfer" each mirror's refcount of the
1714          * source to the destination (this KVM).  The caller holds a reference
1715          * to the source, so there's no danger of use-after-free.
1716          */
1717         list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1718         list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1719                 kvm_get_kvm(dst_kvm);
1720                 kvm_put_kvm(src_kvm);
1721                 mirror->enc_context_owner = dst_kvm;
1722         }
1723
1724         /*
1725          * If this VM is a mirror, remove the old mirror from the owners list
1726          * and add the new mirror to the list.
1727          */
1728         if (is_mirroring_enc_context(dst_kvm)) {
1729                 struct kvm_sev_info *owner_sev_info =
1730                         &to_kvm_svm(dst->enc_context_owner)->sev_info;
1731
1732                 list_del(&src->mirror_entry);
1733                 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1734         }
1735
1736         kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1737                 dst_svm = to_svm(dst_vcpu);
1738
1739                 sev_init_vmcb(dst_svm);
1740
1741                 if (!dst->es_active)
1742                         continue;
1743
1744                 /*
1745                  * Note, the source is not required to have the same number of
1746                  * vCPUs as the destination when migrating a vanilla SEV VM.
1747                  */
1748                 src_vcpu = kvm_get_vcpu(src_kvm, i);
1749                 src_svm = to_svm(src_vcpu);
1750
1751                 /*
1752                  * Transfer VMSA and GHCB state to the destination.  Nullify and
1753                  * clear source fields as appropriate, the state now belongs to
1754                  * the destination.
1755                  */
1756                 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1757                 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1758                 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1759                 dst_vcpu->arch.guest_state_protected = true;
1760
1761                 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1762                 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1763                 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1764                 src_vcpu->arch.guest_state_protected = false;
1765         }
1766 }
1767
1768 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1769 {
1770         struct kvm_vcpu *src_vcpu;
1771         unsigned long i;
1772
1773         if (!sev_es_guest(src))
1774                 return 0;
1775
1776         if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1777                 return -EINVAL;
1778
1779         kvm_for_each_vcpu(i, src_vcpu, src) {
1780                 if (!src_vcpu->arch.guest_state_protected)
1781                         return -EINVAL;
1782         }
1783
1784         return 0;
1785 }
1786
1787 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1788 {
1789         struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1790         struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1791         struct fd f = fdget(source_fd);
1792         struct kvm *source_kvm;
1793         bool charged = false;
1794         int ret;
1795
1796         if (!f.file)
1797                 return -EBADF;
1798
1799         if (!file_is_kvm(f.file)) {
1800                 ret = -EBADF;
1801                 goto out_fput;
1802         }
1803
1804         source_kvm = f.file->private_data;
1805         ret = sev_lock_two_vms(kvm, source_kvm);
1806         if (ret)
1807                 goto out_fput;
1808
1809         if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1810                 ret = -EINVAL;
1811                 goto out_unlock;
1812         }
1813
1814         src_sev = &to_kvm_svm(source_kvm)->sev_info;
1815
1816         dst_sev->misc_cg = get_current_misc_cg();
1817         cg_cleanup_sev = dst_sev;
1818         if (dst_sev->misc_cg != src_sev->misc_cg) {
1819                 ret = sev_misc_cg_try_charge(dst_sev);
1820                 if (ret)
1821                         goto out_dst_cgroup;
1822                 charged = true;
1823         }
1824
1825         ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1826         if (ret)
1827                 goto out_dst_cgroup;
1828         ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1829         if (ret)
1830                 goto out_dst_vcpu;
1831
1832         ret = sev_check_source_vcpus(kvm, source_kvm);
1833         if (ret)
1834                 goto out_source_vcpu;
1835
1836         sev_migrate_from(kvm, source_kvm);
1837         kvm_vm_dead(source_kvm);
1838         cg_cleanup_sev = src_sev;
1839         ret = 0;
1840
1841 out_source_vcpu:
1842         sev_unlock_vcpus_for_migration(source_kvm);
1843 out_dst_vcpu:
1844         sev_unlock_vcpus_for_migration(kvm);
1845 out_dst_cgroup:
1846         /* Operates on the source on success, on the destination on failure.  */
1847         if (charged)
1848                 sev_misc_cg_uncharge(cg_cleanup_sev);
1849         put_misc_cg(cg_cleanup_sev->misc_cg);
1850         cg_cleanup_sev->misc_cg = NULL;
1851 out_unlock:
1852         sev_unlock_two_vms(kvm, source_kvm);
1853 out_fput:
1854         fdput(f);
1855         return ret;
1856 }
1857
1858 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1859 {
1860         struct kvm_sev_cmd sev_cmd;
1861         int r;
1862
1863         if (!sev_enabled)
1864                 return -ENOTTY;
1865
1866         if (!argp)
1867                 return 0;
1868
1869         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1870                 return -EFAULT;
1871
1872         mutex_lock(&kvm->lock);
1873
1874         /* Only the enc_context_owner handles some memory enc operations. */
1875         if (is_mirroring_enc_context(kvm) &&
1876             !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1877                 r = -EINVAL;
1878                 goto out;
1879         }
1880
1881         switch (sev_cmd.id) {
1882         case KVM_SEV_ES_INIT:
1883                 if (!sev_es_enabled) {
1884                         r = -ENOTTY;
1885                         goto out;
1886                 }
1887                 fallthrough;
1888         case KVM_SEV_INIT:
1889                 r = sev_guest_init(kvm, &sev_cmd);
1890                 break;
1891         case KVM_SEV_LAUNCH_START:
1892                 r = sev_launch_start(kvm, &sev_cmd);
1893                 break;
1894         case KVM_SEV_LAUNCH_UPDATE_DATA:
1895                 r = sev_launch_update_data(kvm, &sev_cmd);
1896                 break;
1897         case KVM_SEV_LAUNCH_UPDATE_VMSA:
1898                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1899                 break;
1900         case KVM_SEV_LAUNCH_MEASURE:
1901                 r = sev_launch_measure(kvm, &sev_cmd);
1902                 break;
1903         case KVM_SEV_LAUNCH_FINISH:
1904                 r = sev_launch_finish(kvm, &sev_cmd);
1905                 break;
1906         case KVM_SEV_GUEST_STATUS:
1907                 r = sev_guest_status(kvm, &sev_cmd);
1908                 break;
1909         case KVM_SEV_DBG_DECRYPT:
1910                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1911                 break;
1912         case KVM_SEV_DBG_ENCRYPT:
1913                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1914                 break;
1915         case KVM_SEV_LAUNCH_SECRET:
1916                 r = sev_launch_secret(kvm, &sev_cmd);
1917                 break;
1918         case KVM_SEV_GET_ATTESTATION_REPORT:
1919                 r = sev_get_attestation_report(kvm, &sev_cmd);
1920                 break;
1921         case KVM_SEV_SEND_START:
1922                 r = sev_send_start(kvm, &sev_cmd);
1923                 break;
1924         case KVM_SEV_SEND_UPDATE_DATA:
1925                 r = sev_send_update_data(kvm, &sev_cmd);
1926                 break;
1927         case KVM_SEV_SEND_FINISH:
1928                 r = sev_send_finish(kvm, &sev_cmd);
1929                 break;
1930         case KVM_SEV_SEND_CANCEL:
1931                 r = sev_send_cancel(kvm, &sev_cmd);
1932                 break;
1933         case KVM_SEV_RECEIVE_START:
1934                 r = sev_receive_start(kvm, &sev_cmd);
1935                 break;
1936         case KVM_SEV_RECEIVE_UPDATE_DATA:
1937                 r = sev_receive_update_data(kvm, &sev_cmd);
1938                 break;
1939         case KVM_SEV_RECEIVE_FINISH:
1940                 r = sev_receive_finish(kvm, &sev_cmd);
1941                 break;
1942         default:
1943                 r = -EINVAL;
1944                 goto out;
1945         }
1946
1947         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1948                 r = -EFAULT;
1949
1950 out:
1951         mutex_unlock(&kvm->lock);
1952         return r;
1953 }
1954
1955 int sev_mem_enc_register_region(struct kvm *kvm,
1956                                 struct kvm_enc_region *range)
1957 {
1958         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1959         struct enc_region *region;
1960         int ret = 0;
1961
1962         if (!sev_guest(kvm))
1963                 return -ENOTTY;
1964
1965         /* If kvm is mirroring encryption context it isn't responsible for it */
1966         if (is_mirroring_enc_context(kvm))
1967                 return -EINVAL;
1968
1969         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1970                 return -EINVAL;
1971
1972         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1973         if (!region)
1974                 return -ENOMEM;
1975
1976         mutex_lock(&kvm->lock);
1977         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1978         if (IS_ERR(region->pages)) {
1979                 ret = PTR_ERR(region->pages);
1980                 mutex_unlock(&kvm->lock);
1981                 goto e_free;
1982         }
1983
1984         /*
1985          * The guest may change the memory encryption attribute from C=0 -> C=1
1986          * or vice versa for this memory range. Lets make sure caches are
1987          * flushed to ensure that guest data gets written into memory with
1988          * correct C-bit.  Note, this must be done before dropping kvm->lock,
1989          * as region and its array of pages can be freed by a different task
1990          * once kvm->lock is released.
1991          */
1992         sev_clflush_pages(region->pages, region->npages);
1993
1994         region->uaddr = range->addr;
1995         region->size = range->size;
1996
1997         list_add_tail(&region->list, &sev->regions_list);
1998         mutex_unlock(&kvm->lock);
1999
2000         return ret;
2001
2002 e_free:
2003         kfree(region);
2004         return ret;
2005 }
2006
2007 static struct enc_region *
2008 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2009 {
2010         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2011         struct list_head *head = &sev->regions_list;
2012         struct enc_region *i;
2013
2014         list_for_each_entry(i, head, list) {
2015                 if (i->uaddr == range->addr &&
2016                     i->size == range->size)
2017                         return i;
2018         }
2019
2020         return NULL;
2021 }
2022
2023 static void __unregister_enc_region_locked(struct kvm *kvm,
2024                                            struct enc_region *region)
2025 {
2026         sev_unpin_memory(kvm, region->pages, region->npages);
2027         list_del(&region->list);
2028         kfree(region);
2029 }
2030
2031 int sev_mem_enc_unregister_region(struct kvm *kvm,
2032                                   struct kvm_enc_region *range)
2033 {
2034         struct enc_region *region;
2035         int ret;
2036
2037         /* If kvm is mirroring encryption context it isn't responsible for it */
2038         if (is_mirroring_enc_context(kvm))
2039                 return -EINVAL;
2040
2041         mutex_lock(&kvm->lock);
2042
2043         if (!sev_guest(kvm)) {
2044                 ret = -ENOTTY;
2045                 goto failed;
2046         }
2047
2048         region = find_enc_region(kvm, range);
2049         if (!region) {
2050                 ret = -EINVAL;
2051                 goto failed;
2052         }
2053
2054         /*
2055          * Ensure that all guest tagged cache entries are flushed before
2056          * releasing the pages back to the system for use. CLFLUSH will
2057          * not do this, so issue a WBINVD.
2058          */
2059         wbinvd_on_all_cpus();
2060
2061         __unregister_enc_region_locked(kvm, region);
2062
2063         mutex_unlock(&kvm->lock);
2064         return 0;
2065
2066 failed:
2067         mutex_unlock(&kvm->lock);
2068         return ret;
2069 }
2070
2071 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2072 {
2073         struct fd f = fdget(source_fd);
2074         struct kvm *source_kvm;
2075         struct kvm_sev_info *source_sev, *mirror_sev;
2076         int ret;
2077
2078         if (!f.file)
2079                 return -EBADF;
2080
2081         if (!file_is_kvm(f.file)) {
2082                 ret = -EBADF;
2083                 goto e_source_fput;
2084         }
2085
2086         source_kvm = f.file->private_data;
2087         ret = sev_lock_two_vms(kvm, source_kvm);
2088         if (ret)
2089                 goto e_source_fput;
2090
2091         /*
2092          * Mirrors of mirrors should work, but let's not get silly.  Also
2093          * disallow out-of-band SEV/SEV-ES init if the target is already an
2094          * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2095          * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2096          */
2097         if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2098             is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2099                 ret = -EINVAL;
2100                 goto e_unlock;
2101         }
2102
2103         /*
2104          * The mirror kvm holds an enc_context_owner ref so its asid can't
2105          * disappear until we're done with it
2106          */
2107         source_sev = &to_kvm_svm(source_kvm)->sev_info;
2108         kvm_get_kvm(source_kvm);
2109         mirror_sev = &to_kvm_svm(kvm)->sev_info;
2110         list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2111
2112         /* Set enc_context_owner and copy its encryption context over */
2113         mirror_sev->enc_context_owner = source_kvm;
2114         mirror_sev->active = true;
2115         mirror_sev->asid = source_sev->asid;
2116         mirror_sev->fd = source_sev->fd;
2117         mirror_sev->es_active = source_sev->es_active;
2118         mirror_sev->handle = source_sev->handle;
2119         INIT_LIST_HEAD(&mirror_sev->regions_list);
2120         INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2121         ret = 0;
2122
2123         /*
2124          * Do not copy ap_jump_table. Since the mirror does not share the same
2125          * KVM contexts as the original, and they may have different
2126          * memory-views.
2127          */
2128
2129 e_unlock:
2130         sev_unlock_two_vms(kvm, source_kvm);
2131 e_source_fput:
2132         fdput(f);
2133         return ret;
2134 }
2135
2136 void sev_vm_destroy(struct kvm *kvm)
2137 {
2138         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2139         struct list_head *head = &sev->regions_list;
2140         struct list_head *pos, *q;
2141
2142         if (!sev_guest(kvm))
2143                 return;
2144
2145         WARN_ON(!list_empty(&sev->mirror_vms));
2146
2147         /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2148         if (is_mirroring_enc_context(kvm)) {
2149                 struct kvm *owner_kvm = sev->enc_context_owner;
2150
2151                 mutex_lock(&owner_kvm->lock);
2152                 list_del(&sev->mirror_entry);
2153                 mutex_unlock(&owner_kvm->lock);
2154                 kvm_put_kvm(owner_kvm);
2155                 return;
2156         }
2157
2158         /*
2159          * Ensure that all guest tagged cache entries are flushed before
2160          * releasing the pages back to the system for use. CLFLUSH will
2161          * not do this, so issue a WBINVD.
2162          */
2163         wbinvd_on_all_cpus();
2164
2165         /*
2166          * if userspace was terminated before unregistering the memory regions
2167          * then lets unpin all the registered memory.
2168          */
2169         if (!list_empty(head)) {
2170                 list_for_each_safe(pos, q, head) {
2171                         __unregister_enc_region_locked(kvm,
2172                                 list_entry(pos, struct enc_region, list));
2173                         cond_resched();
2174                 }
2175         }
2176
2177         sev_unbind_asid(kvm, sev->handle);
2178         sev_asid_free(sev);
2179 }
2180
2181 void __init sev_set_cpu_caps(void)
2182 {
2183         if (!sev_enabled)
2184                 kvm_cpu_cap_clear(X86_FEATURE_SEV);
2185         if (!sev_es_enabled)
2186                 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2187 }
2188
2189 void __init sev_hardware_setup(void)
2190 {
2191 #ifdef CONFIG_KVM_AMD_SEV
2192         unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2193         bool sev_es_supported = false;
2194         bool sev_supported = false;
2195
2196         if (!sev_enabled || !npt_enabled || !nrips)
2197                 goto out;
2198
2199         /*
2200          * SEV must obviously be supported in hardware.  Sanity check that the
2201          * CPU supports decode assists, which is mandatory for SEV guests to
2202          * support instruction emulation.  Ditto for flushing by ASID, as SEV
2203          * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2204          * ASID to effect a TLB flush.
2205          */
2206         if (!boot_cpu_has(X86_FEATURE_SEV) ||
2207             WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2208             WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2209                 goto out;
2210
2211         /* Retrieve SEV CPUID information */
2212         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2213
2214         /* Set encryption bit location for SEV-ES guests */
2215         sev_enc_bit = ebx & 0x3f;
2216
2217         /* Maximum number of encrypted guests supported simultaneously */
2218         max_sev_asid = ecx;
2219         if (!max_sev_asid)
2220                 goto out;
2221
2222         /* Minimum ASID value that should be used for SEV guest */
2223         min_sev_asid = edx;
2224         sev_me_mask = 1UL << (ebx & 0x3f);
2225
2226         /*
2227          * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2228          * even though it's never used, so that the bitmap is indexed by the
2229          * actual ASID.
2230          */
2231         nr_asids = max_sev_asid + 1;
2232         sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2233         if (!sev_asid_bitmap)
2234                 goto out;
2235
2236         sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2237         if (!sev_reclaim_asid_bitmap) {
2238                 bitmap_free(sev_asid_bitmap);
2239                 sev_asid_bitmap = NULL;
2240                 goto out;
2241         }
2242
2243         sev_asid_count = max_sev_asid - min_sev_asid + 1;
2244         WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2245         sev_supported = true;
2246
2247         /* SEV-ES support requested? */
2248         if (!sev_es_enabled)
2249                 goto out;
2250
2251         /*
2252          * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2253          * instruction stream, i.e. can't emulate in response to a #NPF and
2254          * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2255          * (the guest can then do a #VMGEXIT to request MMIO emulation).
2256          */
2257         if (!enable_mmio_caching)
2258                 goto out;
2259
2260         /* Does the CPU support SEV-ES? */
2261         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2262                 goto out;
2263
2264         /* Has the system been allocated ASIDs for SEV-ES? */
2265         if (min_sev_asid == 1)
2266                 goto out;
2267
2268         sev_es_asid_count = min_sev_asid - 1;
2269         WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2270         sev_es_supported = true;
2271
2272 out:
2273         if (boot_cpu_has(X86_FEATURE_SEV))
2274                 pr_info("SEV %s (ASIDs %u - %u)\n",
2275                         sev_supported ? "enabled" : "disabled",
2276                         min_sev_asid, max_sev_asid);
2277         if (boot_cpu_has(X86_FEATURE_SEV_ES))
2278                 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2279                         sev_es_supported ? "enabled" : "disabled",
2280                         min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2281
2282         sev_enabled = sev_supported;
2283         sev_es_enabled = sev_es_supported;
2284         if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
2285             !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
2286                 sev_es_debug_swap_enabled = false;
2287 #endif
2288 }
2289
2290 void sev_hardware_unsetup(void)
2291 {
2292         if (!sev_enabled)
2293                 return;
2294
2295         /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2296         sev_flush_asids(1, max_sev_asid);
2297
2298         bitmap_free(sev_asid_bitmap);
2299         bitmap_free(sev_reclaim_asid_bitmap);
2300
2301         misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2302         misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2303 }
2304
2305 int sev_cpu_init(struct svm_cpu_data *sd)
2306 {
2307         if (!sev_enabled)
2308                 return 0;
2309
2310         sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2311         if (!sd->sev_vmcbs)
2312                 return -ENOMEM;
2313
2314         return 0;
2315 }
2316
2317 /*
2318  * Pages used by hardware to hold guest encrypted state must be flushed before
2319  * returning them to the system.
2320  */
2321 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2322 {
2323         int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2324
2325         /*
2326          * Note!  The address must be a kernel address, as regular page walk
2327          * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2328          * address is non-deterministic and unsafe.  This function deliberately
2329          * takes a pointer to deter passing in a user address.
2330          */
2331         unsigned long addr = (unsigned long)va;
2332
2333         /*
2334          * If CPU enforced cache coherency for encrypted mappings of the
2335          * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2336          * flush is still needed in order to work properly with DMA devices.
2337          */
2338         if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2339                 clflush_cache_range(va, PAGE_SIZE);
2340                 return;
2341         }
2342
2343         /*
2344          * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2345          * back to WBINVD if this faults so as not to make any problems worse
2346          * by leaving stale encrypted data in the cache.
2347          */
2348         if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2349                 goto do_wbinvd;
2350
2351         return;
2352
2353 do_wbinvd:
2354         wbinvd_on_all_cpus();
2355 }
2356
2357 void sev_guest_memory_reclaimed(struct kvm *kvm)
2358 {
2359         if (!sev_guest(kvm))
2360                 return;
2361
2362         wbinvd_on_all_cpus();
2363 }
2364
2365 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2366 {
2367         struct vcpu_svm *svm;
2368
2369         if (!sev_es_guest(vcpu->kvm))
2370                 return;
2371
2372         svm = to_svm(vcpu);
2373
2374         if (vcpu->arch.guest_state_protected)
2375                 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2376
2377         __free_page(virt_to_page(svm->sev_es.vmsa));
2378
2379         if (svm->sev_es.ghcb_sa_free)
2380                 kvfree(svm->sev_es.ghcb_sa);
2381 }
2382
2383 static void dump_ghcb(struct vcpu_svm *svm)
2384 {
2385         struct ghcb *ghcb = svm->sev_es.ghcb;
2386         unsigned int nbits;
2387
2388         /* Re-use the dump_invalid_vmcb module parameter */
2389         if (!dump_invalid_vmcb) {
2390                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2391                 return;
2392         }
2393
2394         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2395
2396         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2397         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2398                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2399         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2400                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2401         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2402                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2403         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2404                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2405         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2406 }
2407
2408 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2409 {
2410         struct kvm_vcpu *vcpu = &svm->vcpu;
2411         struct ghcb *ghcb = svm->sev_es.ghcb;
2412
2413         /*
2414          * The GHCB protocol so far allows for the following data
2415          * to be returned:
2416          *   GPRs RAX, RBX, RCX, RDX
2417          *
2418          * Copy their values, even if they may not have been written during the
2419          * VM-Exit.  It's the guest's responsibility to not consume random data.
2420          */
2421         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2422         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2423         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2424         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2425 }
2426
2427 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2428 {
2429         struct vmcb_control_area *control = &svm->vmcb->control;
2430         struct kvm_vcpu *vcpu = &svm->vcpu;
2431         struct ghcb *ghcb = svm->sev_es.ghcb;
2432         u64 exit_code;
2433
2434         /*
2435          * The GHCB protocol so far allows for the following data
2436          * to be supplied:
2437          *   GPRs RAX, RBX, RCX, RDX
2438          *   XCR0
2439          *   CPL
2440          *
2441          * VMMCALL allows the guest to provide extra registers. KVM also
2442          * expects RSI for hypercalls, so include that, too.
2443          *
2444          * Copy their values to the appropriate location if supplied.
2445          */
2446         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2447
2448         BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2449         memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
2450
2451         vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2452         vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2453         vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2454         vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2455         vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
2456
2457         svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2458
2459         if (kvm_ghcb_xcr0_is_valid(svm)) {
2460                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2461                 kvm_update_cpuid_runtime(vcpu);
2462         }
2463
2464         /* Copy the GHCB exit information into the VMCB fields */
2465         exit_code = ghcb_get_sw_exit_code(ghcb);
2466         control->exit_code = lower_32_bits(exit_code);
2467         control->exit_code_hi = upper_32_bits(exit_code);
2468         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2469         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2470         svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
2471
2472         /* Clear the valid entries fields */
2473         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2474 }
2475
2476 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2477 {
2478         return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2479 }
2480
2481 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2482 {
2483         struct vmcb_control_area *control = &svm->vmcb->control;
2484         struct kvm_vcpu *vcpu = &svm->vcpu;
2485         u64 exit_code;
2486         u64 reason;
2487
2488         /*
2489          * Retrieve the exit code now even though it may not be marked valid
2490          * as it could help with debugging.
2491          */
2492         exit_code = kvm_ghcb_get_sw_exit_code(control);
2493
2494         /* Only GHCB Usage code 0 is supported */
2495         if (svm->sev_es.ghcb->ghcb_usage) {
2496                 reason = GHCB_ERR_INVALID_USAGE;
2497                 goto vmgexit_err;
2498         }
2499
2500         reason = GHCB_ERR_MISSING_INPUT;
2501
2502         if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2503             !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2504             !kvm_ghcb_sw_exit_info_2_is_valid(svm))
2505                 goto vmgexit_err;
2506
2507         switch (exit_code) {
2508         case SVM_EXIT_READ_DR7:
2509                 break;
2510         case SVM_EXIT_WRITE_DR7:
2511                 if (!kvm_ghcb_rax_is_valid(svm))
2512                         goto vmgexit_err;
2513                 break;
2514         case SVM_EXIT_RDTSC:
2515                 break;
2516         case SVM_EXIT_RDPMC:
2517                 if (!kvm_ghcb_rcx_is_valid(svm))
2518                         goto vmgexit_err;
2519                 break;
2520         case SVM_EXIT_CPUID:
2521                 if (!kvm_ghcb_rax_is_valid(svm) ||
2522                     !kvm_ghcb_rcx_is_valid(svm))
2523                         goto vmgexit_err;
2524                 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
2525                         if (!kvm_ghcb_xcr0_is_valid(svm))
2526                                 goto vmgexit_err;
2527                 break;
2528         case SVM_EXIT_INVD:
2529                 break;
2530         case SVM_EXIT_IOIO:
2531                 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
2532                         if (!kvm_ghcb_sw_scratch_is_valid(svm))
2533                                 goto vmgexit_err;
2534                 } else {
2535                         if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
2536                                 if (!kvm_ghcb_rax_is_valid(svm))
2537                                         goto vmgexit_err;
2538                 }
2539                 break;
2540         case SVM_EXIT_MSR:
2541                 if (!kvm_ghcb_rcx_is_valid(svm))
2542                         goto vmgexit_err;
2543                 if (control->exit_info_1) {
2544                         if (!kvm_ghcb_rax_is_valid(svm) ||
2545                             !kvm_ghcb_rdx_is_valid(svm))
2546                                 goto vmgexit_err;
2547                 }
2548                 break;
2549         case SVM_EXIT_VMMCALL:
2550                 if (!kvm_ghcb_rax_is_valid(svm) ||
2551                     !kvm_ghcb_cpl_is_valid(svm))
2552                         goto vmgexit_err;
2553                 break;
2554         case SVM_EXIT_RDTSCP:
2555                 break;
2556         case SVM_EXIT_WBINVD:
2557                 break;
2558         case SVM_EXIT_MONITOR:
2559                 if (!kvm_ghcb_rax_is_valid(svm) ||
2560                     !kvm_ghcb_rcx_is_valid(svm) ||
2561                     !kvm_ghcb_rdx_is_valid(svm))
2562                         goto vmgexit_err;
2563                 break;
2564         case SVM_EXIT_MWAIT:
2565                 if (!kvm_ghcb_rax_is_valid(svm) ||
2566                     !kvm_ghcb_rcx_is_valid(svm))
2567                         goto vmgexit_err;
2568                 break;
2569         case SVM_VMGEXIT_MMIO_READ:
2570         case SVM_VMGEXIT_MMIO_WRITE:
2571                 if (!kvm_ghcb_sw_scratch_is_valid(svm))
2572                         goto vmgexit_err;
2573                 break;
2574         case SVM_VMGEXIT_NMI_COMPLETE:
2575         case SVM_VMGEXIT_AP_HLT_LOOP:
2576         case SVM_VMGEXIT_AP_JUMP_TABLE:
2577         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2578                 break;
2579         default:
2580                 reason = GHCB_ERR_INVALID_EVENT;
2581                 goto vmgexit_err;
2582         }
2583
2584         return 0;
2585
2586 vmgexit_err:
2587         if (reason == GHCB_ERR_INVALID_USAGE) {
2588                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2589                             svm->sev_es.ghcb->ghcb_usage);
2590         } else if (reason == GHCB_ERR_INVALID_EVENT) {
2591                 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2592                             exit_code);
2593         } else {
2594                 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2595                             exit_code);
2596                 dump_ghcb(svm);
2597         }
2598
2599         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2600         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
2601
2602         /* Resume the guest to "return" the error code. */
2603         return 1;
2604 }
2605
2606 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2607 {
2608         if (!svm->sev_es.ghcb)
2609                 return;
2610
2611         if (svm->sev_es.ghcb_sa_free) {
2612                 /*
2613                  * The scratch area lives outside the GHCB, so there is a
2614                  * buffer that, depending on the operation performed, may
2615                  * need to be synced, then freed.
2616                  */
2617                 if (svm->sev_es.ghcb_sa_sync) {
2618                         kvm_write_guest(svm->vcpu.kvm,
2619                                         svm->sev_es.sw_scratch,
2620                                         svm->sev_es.ghcb_sa,
2621                                         svm->sev_es.ghcb_sa_len);
2622                         svm->sev_es.ghcb_sa_sync = false;
2623                 }
2624
2625                 kvfree(svm->sev_es.ghcb_sa);
2626                 svm->sev_es.ghcb_sa = NULL;
2627                 svm->sev_es.ghcb_sa_free = false;
2628         }
2629
2630         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2631
2632         sev_es_sync_to_ghcb(svm);
2633
2634         kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2635         svm->sev_es.ghcb = NULL;
2636 }
2637
2638 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2639 {
2640         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2641         int asid = sev_get_asid(svm->vcpu.kvm);
2642
2643         /* Assign the asid allocated with this SEV guest */
2644         svm->asid = asid;
2645
2646         /*
2647          * Flush guest TLB:
2648          *
2649          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2650          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2651          */
2652         if (sd->sev_vmcbs[asid] == svm->vmcb &&
2653             svm->vcpu.arch.last_vmentry_cpu == cpu)
2654                 return;
2655
2656         sd->sev_vmcbs[asid] = svm->vmcb;
2657         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2658         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2659 }
2660
2661 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
2662 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2663 {
2664         struct vmcb_control_area *control = &svm->vmcb->control;
2665         u64 ghcb_scratch_beg, ghcb_scratch_end;
2666         u64 scratch_gpa_beg, scratch_gpa_end;
2667         void *scratch_va;
2668
2669         scratch_gpa_beg = svm->sev_es.sw_scratch;
2670         if (!scratch_gpa_beg) {
2671                 pr_err("vmgexit: scratch gpa not provided\n");
2672                 goto e_scratch;
2673         }
2674
2675         scratch_gpa_end = scratch_gpa_beg + len;
2676         if (scratch_gpa_end < scratch_gpa_beg) {
2677                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2678                        len, scratch_gpa_beg);
2679                 goto e_scratch;
2680         }
2681
2682         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2683                 /* Scratch area begins within GHCB */
2684                 ghcb_scratch_beg = control->ghcb_gpa +
2685                                    offsetof(struct ghcb, shared_buffer);
2686                 ghcb_scratch_end = control->ghcb_gpa +
2687                                    offsetof(struct ghcb, reserved_0xff0);
2688
2689                 /*
2690                  * If the scratch area begins within the GHCB, it must be
2691                  * completely contained in the GHCB shared buffer area.
2692                  */
2693                 if (scratch_gpa_beg < ghcb_scratch_beg ||
2694                     scratch_gpa_end > ghcb_scratch_end) {
2695                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2696                                scratch_gpa_beg, scratch_gpa_end);
2697                         goto e_scratch;
2698                 }
2699
2700                 scratch_va = (void *)svm->sev_es.ghcb;
2701                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2702         } else {
2703                 /*
2704                  * The guest memory must be read into a kernel buffer, so
2705                  * limit the size
2706                  */
2707                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2708                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2709                                len, GHCB_SCRATCH_AREA_LIMIT);
2710                         goto e_scratch;
2711                 }
2712                 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2713                 if (!scratch_va)
2714                         return -ENOMEM;
2715
2716                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2717                         /* Unable to copy scratch area from guest */
2718                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2719
2720                         kvfree(scratch_va);
2721                         return -EFAULT;
2722                 }
2723
2724                 /*
2725                  * The scratch area is outside the GHCB. The operation will
2726                  * dictate whether the buffer needs to be synced before running
2727                  * the vCPU next time (i.e. a read was requested so the data
2728                  * must be written back to the guest memory).
2729                  */
2730                 svm->sev_es.ghcb_sa_sync = sync;
2731                 svm->sev_es.ghcb_sa_free = true;
2732         }
2733
2734         svm->sev_es.ghcb_sa = scratch_va;
2735         svm->sev_es.ghcb_sa_len = len;
2736
2737         return 0;
2738
2739 e_scratch:
2740         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2741         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2742
2743         return 1;
2744 }
2745
2746 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2747                               unsigned int pos)
2748 {
2749         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2750         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2751 }
2752
2753 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2754 {
2755         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2756 }
2757
2758 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2759 {
2760         svm->vmcb->control.ghcb_gpa = value;
2761 }
2762
2763 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2764 {
2765         struct vmcb_control_area *control = &svm->vmcb->control;
2766         struct kvm_vcpu *vcpu = &svm->vcpu;
2767         u64 ghcb_info;
2768         int ret = 1;
2769
2770         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2771
2772         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2773                                              control->ghcb_gpa);
2774
2775         switch (ghcb_info) {
2776         case GHCB_MSR_SEV_INFO_REQ:
2777                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2778                                                     GHCB_VERSION_MIN,
2779                                                     sev_enc_bit));
2780                 break;
2781         case GHCB_MSR_CPUID_REQ: {
2782                 u64 cpuid_fn, cpuid_reg, cpuid_value;
2783
2784                 cpuid_fn = get_ghcb_msr_bits(svm,
2785                                              GHCB_MSR_CPUID_FUNC_MASK,
2786                                              GHCB_MSR_CPUID_FUNC_POS);
2787
2788                 /* Initialize the registers needed by the CPUID intercept */
2789                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2790                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2791
2792                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2793                 if (!ret) {
2794                         /* Error, keep GHCB MSR value as-is */
2795                         break;
2796                 }
2797
2798                 cpuid_reg = get_ghcb_msr_bits(svm,
2799                                               GHCB_MSR_CPUID_REG_MASK,
2800                                               GHCB_MSR_CPUID_REG_POS);
2801                 if (cpuid_reg == 0)
2802                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2803                 else if (cpuid_reg == 1)
2804                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2805                 else if (cpuid_reg == 2)
2806                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2807                 else
2808                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2809
2810                 set_ghcb_msr_bits(svm, cpuid_value,
2811                                   GHCB_MSR_CPUID_VALUE_MASK,
2812                                   GHCB_MSR_CPUID_VALUE_POS);
2813
2814                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2815                                   GHCB_MSR_INFO_MASK,
2816                                   GHCB_MSR_INFO_POS);
2817                 break;
2818         }
2819         case GHCB_MSR_TERM_REQ: {
2820                 u64 reason_set, reason_code;
2821
2822                 reason_set = get_ghcb_msr_bits(svm,
2823                                                GHCB_MSR_TERM_REASON_SET_MASK,
2824                                                GHCB_MSR_TERM_REASON_SET_POS);
2825                 reason_code = get_ghcb_msr_bits(svm,
2826                                                 GHCB_MSR_TERM_REASON_MASK,
2827                                                 GHCB_MSR_TERM_REASON_POS);
2828                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2829                         reason_set, reason_code);
2830
2831                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2832                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2833                 vcpu->run->system_event.ndata = 1;
2834                 vcpu->run->system_event.data[0] = control->ghcb_gpa;
2835
2836                 return 0;
2837         }
2838         default:
2839                 /* Error, keep GHCB MSR value as-is */
2840                 break;
2841         }
2842
2843         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2844                                             control->ghcb_gpa, ret);
2845
2846         return ret;
2847 }
2848
2849 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2850 {
2851         struct vcpu_svm *svm = to_svm(vcpu);
2852         struct vmcb_control_area *control = &svm->vmcb->control;
2853         u64 ghcb_gpa, exit_code;
2854         int ret;
2855
2856         /* Validate the GHCB */
2857         ghcb_gpa = control->ghcb_gpa;
2858         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2859                 return sev_handle_vmgexit_msr_protocol(svm);
2860
2861         if (!ghcb_gpa) {
2862                 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2863
2864                 /* Without a GHCB, just return right back to the guest */
2865                 return 1;
2866         }
2867
2868         if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2869                 /* Unable to map GHCB from guest */
2870                 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2871                             ghcb_gpa);
2872
2873                 /* Without a GHCB, just return right back to the guest */
2874                 return 1;
2875         }
2876
2877         svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2878
2879         trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
2880
2881         sev_es_sync_from_ghcb(svm);
2882         ret = sev_es_validate_vmgexit(svm);
2883         if (ret)
2884                 return ret;
2885
2886         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
2887         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
2888
2889         exit_code = kvm_ghcb_get_sw_exit_code(control);
2890         switch (exit_code) {
2891         case SVM_VMGEXIT_MMIO_READ:
2892                 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2893                 if (ret)
2894                         break;
2895
2896                 ret = kvm_sev_es_mmio_read(vcpu,
2897                                            control->exit_info_1,
2898                                            control->exit_info_2,
2899                                            svm->sev_es.ghcb_sa);
2900                 break;
2901         case SVM_VMGEXIT_MMIO_WRITE:
2902                 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2903                 if (ret)
2904                         break;
2905
2906                 ret = kvm_sev_es_mmio_write(vcpu,
2907                                             control->exit_info_1,
2908                                             control->exit_info_2,
2909                                             svm->sev_es.ghcb_sa);
2910                 break;
2911         case SVM_VMGEXIT_NMI_COMPLETE:
2912                 ++vcpu->stat.nmi_window_exits;
2913                 svm->nmi_masked = false;
2914                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2915                 ret = 1;
2916                 break;
2917         case SVM_VMGEXIT_AP_HLT_LOOP:
2918                 ret = kvm_emulate_ap_reset_hold(vcpu);
2919                 break;
2920         case SVM_VMGEXIT_AP_JUMP_TABLE: {
2921                 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2922
2923                 switch (control->exit_info_1) {
2924                 case 0:
2925                         /* Set AP jump table address */
2926                         sev->ap_jump_table = control->exit_info_2;
2927                         break;
2928                 case 1:
2929                         /* Get AP jump table address */
2930                         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
2931                         break;
2932                 default:
2933                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2934                                control->exit_info_1);
2935                         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2936                         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
2937                 }
2938
2939                 ret = 1;
2940                 break;
2941         }
2942         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2943                 vcpu_unimpl(vcpu,
2944                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2945                             control->exit_info_1, control->exit_info_2);
2946                 ret = -EINVAL;
2947                 break;
2948         default:
2949                 ret = svm_invoke_exit_handler(vcpu, exit_code);
2950         }
2951
2952         return ret;
2953 }
2954
2955 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2956 {
2957         int count;
2958         int bytes;
2959         int r;
2960
2961         if (svm->vmcb->control.exit_info_2 > INT_MAX)
2962                 return -EINVAL;
2963
2964         count = svm->vmcb->control.exit_info_2;
2965         if (unlikely(check_mul_overflow(count, size, &bytes)))
2966                 return -EINVAL;
2967
2968         r = setup_vmgexit_scratch(svm, in, bytes);
2969         if (r)
2970                 return r;
2971
2972         return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2973                                     count, in);
2974 }
2975
2976 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2977 {
2978         struct kvm_vcpu *vcpu = &svm->vcpu;
2979
2980         if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
2981                 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
2982                                  guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
2983
2984                 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
2985         }
2986
2987         /*
2988          * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
2989          * the host/guest supports its use.
2990          *
2991          * guest_can_use() checks a number of requirements on the host/guest to
2992          * ensure that MSR_IA32_XSS is available, but it might report true even
2993          * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
2994          * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
2995          * to further check that the guest CPUID actually supports
2996          * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
2997          * guests will still get intercepted and caught in the normal
2998          * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
2999          */
3000         if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
3001             guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3002                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
3003         else
3004                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
3005 }
3006
3007 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
3008 {
3009         struct kvm_vcpu *vcpu = &svm->vcpu;
3010         struct kvm_cpuid_entry2 *best;
3011
3012         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
3013         best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
3014         if (best)
3015                 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3016
3017         if (sev_es_guest(svm->vcpu.kvm))
3018                 sev_es_vcpu_after_set_cpuid(svm);
3019 }
3020
3021 static void sev_es_init_vmcb(struct vcpu_svm *svm)
3022 {
3023         struct vmcb *vmcb = svm->vmcb01.ptr;
3024         struct kvm_vcpu *vcpu = &svm->vcpu;
3025
3026         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
3027         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
3028
3029         /*
3030          * An SEV-ES guest requires a VMSA area that is a separate from the
3031          * VMCB page. Do not include the encryption mask on the VMSA physical
3032          * address since hardware will access it using the guest key.  Note,
3033          * the VMSA will be NULL if this vCPU is the destination for intrahost
3034          * migration, and will be copied later.
3035          */
3036         if (svm->sev_es.vmsa)
3037                 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
3038
3039         /* Can't intercept CR register access, HV can't modify CR registers */
3040         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
3041         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
3042         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
3043         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
3044         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
3045         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3046
3047         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
3048
3049         /* Track EFER/CR register changes */
3050         svm_set_intercept(svm, TRAP_EFER_WRITE);
3051         svm_set_intercept(svm, TRAP_CR0_WRITE);
3052         svm_set_intercept(svm, TRAP_CR4_WRITE);
3053         svm_set_intercept(svm, TRAP_CR8_WRITE);
3054
3055         vmcb->control.intercepts[INTERCEPT_DR] = 0;
3056         if (!sev_es_debug_swap_enabled) {
3057                 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
3058                 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
3059                 recalc_intercepts(svm);
3060         } else {
3061                 /*
3062                  * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
3063                  * allow debugging SEV-ES guests, and enables DebugSwap iff
3064                  * NO_NESTED_DATA_BP is supported, so there's no reason to
3065                  * intercept #DB when DebugSwap is enabled.  For simplicity
3066                  * with respect to guest debug, intercept #DB for other VMs
3067                  * even if NO_NESTED_DATA_BP is supported, i.e. even if the
3068                  * guest can't DoS the CPU with infinite #DB vectoring.
3069                  */
3070                 clr_exception_intercept(svm, DB_VECTOR);
3071         }
3072
3073         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
3074         svm_clr_intercept(svm, INTERCEPT_XSETBV);
3075
3076         /* Clear intercepts on selected MSRs */
3077         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
3078         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
3079         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
3080         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
3081         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
3082         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
3083 }
3084
3085 void sev_init_vmcb(struct vcpu_svm *svm)
3086 {
3087         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3088         clr_exception_intercept(svm, UD_VECTOR);
3089
3090         /*
3091          * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
3092          * KVM can't decrypt guest memory to decode the faulting instruction.
3093          */
3094         clr_exception_intercept(svm, GP_VECTOR);
3095
3096         if (sev_es_guest(svm->vcpu.kvm))
3097                 sev_es_init_vmcb(svm);
3098 }
3099
3100 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3101 {
3102         /*
3103          * Set the GHCB MSR value as per the GHCB specification when emulating
3104          * vCPU RESET for an SEV-ES guest.
3105          */
3106         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3107                                             GHCB_VERSION_MIN,
3108                                             sev_enc_bit));
3109 }
3110
3111 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3112 {
3113         /*
3114          * All host state for SEV-ES guests is categorized into three swap types
3115          * based on how it is handled by hardware during a world switch:
3116          *
3117          * A: VMRUN:   Host state saved in host save area
3118          *    VMEXIT:  Host state loaded from host save area
3119          *
3120          * B: VMRUN:   Host state _NOT_ saved in host save area
3121          *    VMEXIT:  Host state loaded from host save area
3122          *
3123          * C: VMRUN:   Host state _NOT_ saved in host save area
3124          *    VMEXIT:  Host state initialized to default(reset) values
3125          *
3126          * Manually save type-B state, i.e. state that is loaded by VMEXIT but
3127          * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
3128          * by common SVM code).
3129          */
3130         hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3131         hostsa->pkru = read_pkru();
3132         hostsa->xss = host_xss;
3133
3134         /*
3135          * If DebugSwap is enabled, debug registers are loaded but NOT saved by
3136          * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
3137          * saves and loads debug registers (Type-A).
3138          */
3139         if (sev_es_debug_swap_enabled) {
3140                 hostsa->dr0 = native_get_debugreg(0);
3141                 hostsa->dr1 = native_get_debugreg(1);
3142                 hostsa->dr2 = native_get_debugreg(2);
3143                 hostsa->dr3 = native_get_debugreg(3);
3144                 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
3145                 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
3146                 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
3147                 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
3148         }
3149 }
3150
3151 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3152 {
3153         struct vcpu_svm *svm = to_svm(vcpu);
3154
3155         /* First SIPI: Use the values as initially set by the VMM */
3156         if (!svm->sev_es.received_first_sipi) {
3157                 svm->sev_es.received_first_sipi = true;
3158                 return;
3159         }
3160
3161         /*
3162          * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3163          * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3164          * non-zero value.
3165          */
3166         if (!svm->sev_es.ghcb)
3167                 return;
3168
3169         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3170 }
3171
3172 struct page *snp_safe_alloc_page(struct kvm_vcpu *vcpu)
3173 {
3174         unsigned long pfn;
3175         struct page *p;
3176
3177         if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
3178                 return alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3179
3180         /*
3181          * Allocate an SNP-safe page to workaround the SNP erratum where
3182          * the CPU will incorrectly signal an RMP violation #PF if a
3183          * hugepage (2MB or 1GB) collides with the RMP entry of a
3184          * 2MB-aligned VMCB, VMSA, or AVIC backing page.
3185          *
3186          * Allocate one extra page, choose a page which is not
3187          * 2MB-aligned, and free the other.
3188          */
3189         p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
3190         if (!p)
3191                 return NULL;
3192
3193         split_page(p, 1);
3194
3195         pfn = page_to_pfn(p);
3196         if (IS_ALIGNED(pfn, PTRS_PER_PMD))
3197                 __free_page(p++);
3198         else
3199                 __free_page(p + 1);
3200
3201         return p;
3202 }