Merge tag 'driver-core-6.9-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38
39 u32 xstate_required_size(u64 xstate_bv, bool compacted)
40 {
41         int feature_bit = 0;
42         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43
44         xstate_bv &= XFEATURE_MASK_EXTEND;
45         while (xstate_bv) {
46                 if (xstate_bv & 0x1) {
47                         u32 eax, ebx, ecx, edx, offset;
48                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49                         /* ECX[1]: 64B alignment in compacted form */
50                         if (compacted)
51                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52                         else
53                                 offset = ebx;
54                         ret = max(ret, offset + eax);
55                 }
56
57                 xstate_bv >>= 1;
58                 feature_bit++;
59         }
60
61         return ret;
62 }
63
64 #define F feature_bit
65
66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
67 #define SF(name)                                                \
68 ({                                                              \
69         BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);   \
70         (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);       \
71 })
72
73 /*
74  * Magic value used by KVM when querying userspace-provided CPUID entries and
75  * doesn't care about the CPIUD index because the index of the function in
76  * question is not significant.  Note, this magic value must have at least one
77  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78  * to avoid false positives when processing guest CPUID input.
79  */
80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81
82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84 {
85         struct kvm_cpuid_entry2 *e;
86         int i;
87
88         /*
89          * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90          * with IRQs disabled is disallowed.  The CPUID model can legitimately
91          * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92          * typically disabled in KVM only when KVM is in a performance critical
93          * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
94          * if this rule is violated, this assertion is purely to flag potential
95          * performance issues.  If this fires, consider moving the lookup out
96          * of the hotpath, e.g. by caching information during CPUID updates.
97          */
98         lockdep_assert_irqs_enabled();
99
100         for (i = 0; i < nent; i++) {
101                 e = &entries[i];
102
103                 if (e->function != function)
104                         continue;
105
106                 /*
107                  * If the index isn't significant, use the first entry with a
108                  * matching function.  It's userspace's responsibility to not
109                  * provide "duplicate" entries in all cases.
110                  */
111                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112                         return e;
113
114
115                 /*
116                  * Similarly, use the first matching entry if KVM is doing a
117                  * lookup (as opposed to emulating CPUID) for a function that's
118                  * architecturally defined as not having a significant index.
119                  */
120                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121                         /*
122                          * Direct lookups from KVM should not diverge from what
123                          * KVM defines internally (the architectural behavior).
124                          */
125                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
126                         return e;
127                 }
128         }
129
130         return NULL;
131 }
132
133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134                            struct kvm_cpuid_entry2 *entries,
135                            int nent)
136 {
137         struct kvm_cpuid_entry2 *best;
138         u64 xfeatures;
139
140         /*
141          * The existing code assumes virtual address is 48-bit or 57-bit in the
142          * canonical address checks; exit if it is ever changed.
143          */
144         best = cpuid_entry2_find(entries, nent, 0x80000008,
145                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146         if (best) {
147                 int vaddr_bits = (best->eax & 0xff00) >> 8;
148
149                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150                         return -EINVAL;
151         }
152
153         /*
154          * Exposing dynamic xfeatures to the guest requires additional
155          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156          */
157         best = cpuid_entry2_find(entries, nent, 0xd, 0);
158         if (!best)
159                 return 0;
160
161         xfeatures = best->eax | ((u64)best->edx << 32);
162         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163         if (!xfeatures)
164                 return 0;
165
166         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168
169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171                                  int nent)
172 {
173         struct kvm_cpuid_entry2 *orig;
174         int i;
175
176         if (nent != vcpu->arch.cpuid_nent)
177                 return -EINVAL;
178
179         for (i = 0; i < nent; i++) {
180                 orig = &vcpu->arch.cpuid_entries[i];
181                 if (e2[i].function != orig->function ||
182                     e2[i].index != orig->index ||
183                     e2[i].flags != orig->flags ||
184                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186                         return -EINVAL;
187         }
188
189         return 0;
190 }
191
192 static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
193                                                               int nent, const char *sig)
194 {
195         struct kvm_hypervisor_cpuid cpuid = {};
196         struct kvm_cpuid_entry2 *entry;
197         u32 base;
198
199         for_each_possible_hypervisor_cpuid_base(base) {
200                 entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
201
202                 if (entry) {
203                         u32 signature[3];
204
205                         signature[0] = entry->ebx;
206                         signature[1] = entry->ecx;
207                         signature[2] = entry->edx;
208
209                         if (!memcmp(signature, sig, sizeof(signature))) {
210                                 cpuid.base = base;
211                                 cpuid.limit = entry->eax;
212                                 break;
213                         }
214                 }
215         }
216
217         return cpuid;
218 }
219
220 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
221                                                             const char *sig)
222 {
223         return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
224                                           vcpu->arch.cpuid_nent, sig);
225 }
226
227 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
228                                                               int nent, u32 kvm_cpuid_base)
229 {
230         return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
231                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
232 }
233
234 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
235 {
236         u32 base = vcpu->arch.kvm_cpuid.base;
237
238         if (!base)
239                 return NULL;
240
241         return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
242                                              vcpu->arch.cpuid_nent, base);
243 }
244
245 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
246 {
247         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
248
249         /*
250          * save the feature bitmap to avoid cpuid lookup for every PV
251          * operation
252          */
253         if (best)
254                 vcpu->arch.pv_cpuid.features = best->eax;
255 }
256
257 /*
258  * Calculate guest's supported XCR0 taking into account guest CPUID data and
259  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
260  */
261 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
262 {
263         struct kvm_cpuid_entry2 *best;
264
265         best = cpuid_entry2_find(entries, nent, 0xd, 0);
266         if (!best)
267                 return 0;
268
269         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
270 }
271
272 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
273                                        int nent)
274 {
275         struct kvm_cpuid_entry2 *best;
276         struct kvm_hypervisor_cpuid kvm_cpuid;
277
278         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
279         if (best) {
280                 /* Update OSXSAVE bit */
281                 if (boot_cpu_has(X86_FEATURE_XSAVE))
282                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
283                                            kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
284
285                 cpuid_entry_change(best, X86_FEATURE_APIC,
286                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
287         }
288
289         best = cpuid_entry2_find(entries, nent, 7, 0);
290         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
291                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
292                                    kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
293
294         best = cpuid_entry2_find(entries, nent, 0xD, 0);
295         if (best)
296                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
297
298         best = cpuid_entry2_find(entries, nent, 0xD, 1);
299         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
300                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
301                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
302
303         kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
304         if (kvm_cpuid.base) {
305                 best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
306                 if (kvm_hlt_in_guest(vcpu->kvm) && best)
307                         best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
308         }
309
310         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
311                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
312                 if (best)
313                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
314                                            vcpu->arch.ia32_misc_enable_msr &
315                                            MSR_IA32_MISC_ENABLE_MWAIT);
316         }
317 }
318
319 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
320 {
321         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
322 }
323 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
324
325 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
326 {
327 #ifdef CONFIG_KVM_HYPERV
328         struct kvm_cpuid_entry2 *entry;
329
330         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
331                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
332         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
333 #else
334         return false;
335 #endif
336 }
337
338 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
339 {
340         struct kvm_lapic *apic = vcpu->arch.apic;
341         struct kvm_cpuid_entry2 *best;
342         bool allow_gbpages;
343
344         BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
345         bitmap_zero(vcpu->arch.governed_features.enabled,
346                     KVM_MAX_NR_GOVERNED_FEATURES);
347
348         /*
349          * If TDP is enabled, let the guest use GBPAGES if they're supported in
350          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
351          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
352          * walk for performance and complexity reasons.  Not to mention KVM
353          * _can't_ solve the problem because GVA->GPA walks aren't visible to
354          * KVM once a TDP translation is installed.  Mimic hardware behavior so
355          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
356          * If TDP is disabled, honor *only* guest CPUID as KVM has full control
357          * and can install smaller shadow pages if the host lacks 1GiB support.
358          */
359         allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
360                                       guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
361         if (allow_gbpages)
362                 kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
363
364         best = kvm_find_cpuid_entry(vcpu, 1);
365         if (best && apic) {
366                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
367                         apic->lapic_timer.timer_mode_mask = 3 << 17;
368                 else
369                         apic->lapic_timer.timer_mode_mask = 1 << 17;
370
371                 kvm_apic_set_version(vcpu);
372         }
373
374         vcpu->arch.guest_supported_xcr0 =
375                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
376
377         kvm_update_pv_runtime(vcpu);
378
379         vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
380         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
381         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
382
383         kvm_pmu_refresh(vcpu);
384         vcpu->arch.cr4_guest_rsvd_bits =
385             __cr4_reserved_bits(guest_cpuid_has, vcpu);
386
387         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
388                                                     vcpu->arch.cpuid_nent));
389
390         /* Invoke the vendor callback only after the above state is updated. */
391         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
392
393         /*
394          * Except for the MMU, which needs to do its thing any vendor specific
395          * adjustments to the reserved GPA bits.
396          */
397         kvm_mmu_after_set_cpuid(vcpu);
398 }
399
400 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
401 {
402         struct kvm_cpuid_entry2 *best;
403
404         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
405         if (!best || best->eax < 0x80000008)
406                 goto not_found;
407         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
408         if (best)
409                 return best->eax & 0xff;
410 not_found:
411         return 36;
412 }
413
414 /*
415  * This "raw" version returns the reserved GPA bits without any adjustments for
416  * encryption technologies that usurp bits.  The raw mask should be used if and
417  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
418  */
419 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
420 {
421         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
422 }
423
424 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
425                         int nent)
426 {
427         int r;
428
429         __kvm_update_cpuid_runtime(vcpu, e2, nent);
430
431         /*
432          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
433          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
434          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
435          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
436          * the core vCPU model on the fly. It would've been better to forbid any
437          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
438          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
439          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
440          * whether the supplied CPUID data is equal to what's already set.
441          */
442         if (kvm_vcpu_has_run(vcpu)) {
443                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
444                 if (r)
445                         return r;
446
447                 kvfree(e2);
448                 return 0;
449         }
450
451 #ifdef CONFIG_KVM_HYPERV
452         if (kvm_cpuid_has_hyperv(e2, nent)) {
453                 r = kvm_hv_vcpu_init(vcpu);
454                 if (r)
455                         return r;
456         }
457 #endif
458
459         r = kvm_check_cpuid(vcpu, e2, nent);
460         if (r)
461                 return r;
462
463         kvfree(vcpu->arch.cpuid_entries);
464         vcpu->arch.cpuid_entries = e2;
465         vcpu->arch.cpuid_nent = nent;
466
467         vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
468 #ifdef CONFIG_KVM_XEN
469         vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
470 #endif
471         kvm_vcpu_after_set_cpuid(vcpu);
472
473         return 0;
474 }
475
476 /* when an old userspace process fills a new kernel module */
477 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
478                              struct kvm_cpuid *cpuid,
479                              struct kvm_cpuid_entry __user *entries)
480 {
481         int r, i;
482         struct kvm_cpuid_entry *e = NULL;
483         struct kvm_cpuid_entry2 *e2 = NULL;
484
485         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
486                 return -E2BIG;
487
488         if (cpuid->nent) {
489                 e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
490                 if (IS_ERR(e))
491                         return PTR_ERR(e);
492
493                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
494                 if (!e2) {
495                         r = -ENOMEM;
496                         goto out_free_cpuid;
497                 }
498         }
499         for (i = 0; i < cpuid->nent; i++) {
500                 e2[i].function = e[i].function;
501                 e2[i].eax = e[i].eax;
502                 e2[i].ebx = e[i].ebx;
503                 e2[i].ecx = e[i].ecx;
504                 e2[i].edx = e[i].edx;
505                 e2[i].index = 0;
506                 e2[i].flags = 0;
507                 e2[i].padding[0] = 0;
508                 e2[i].padding[1] = 0;
509                 e2[i].padding[2] = 0;
510         }
511
512         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
513         if (r)
514                 kvfree(e2);
515
516 out_free_cpuid:
517         kvfree(e);
518
519         return r;
520 }
521
522 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
523                               struct kvm_cpuid2 *cpuid,
524                               struct kvm_cpuid_entry2 __user *entries)
525 {
526         struct kvm_cpuid_entry2 *e2 = NULL;
527         int r;
528
529         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
530                 return -E2BIG;
531
532         if (cpuid->nent) {
533                 e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
534                 if (IS_ERR(e2))
535                         return PTR_ERR(e2);
536         }
537
538         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
539         if (r)
540                 kvfree(e2);
541
542         return r;
543 }
544
545 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
546                               struct kvm_cpuid2 *cpuid,
547                               struct kvm_cpuid_entry2 __user *entries)
548 {
549         if (cpuid->nent < vcpu->arch.cpuid_nent)
550                 return -E2BIG;
551
552         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
553                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
554                 return -EFAULT;
555
556         cpuid->nent = vcpu->arch.cpuid_nent;
557         return 0;
558 }
559
560 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
561 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
562 {
563         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
564         struct kvm_cpuid_entry2 entry;
565
566         reverse_cpuid_check(leaf);
567
568         cpuid_count(cpuid.function, cpuid.index,
569                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
570
571         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
572 }
573
574 static __always_inline
575 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
576 {
577         /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
578         BUILD_BUG_ON(leaf < NCAPINTS);
579
580         kvm_cpu_caps[leaf] = mask;
581
582         __kvm_cpu_cap_mask(leaf);
583 }
584
585 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
586 {
587         /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
588         BUILD_BUG_ON(leaf >= NCAPINTS);
589
590         kvm_cpu_caps[leaf] &= mask;
591
592         __kvm_cpu_cap_mask(leaf);
593 }
594
595 void kvm_set_cpu_caps(void)
596 {
597 #ifdef CONFIG_X86_64
598         unsigned int f_gbpages = F(GBPAGES);
599         unsigned int f_lm = F(LM);
600         unsigned int f_xfd = F(XFD);
601 #else
602         unsigned int f_gbpages = 0;
603         unsigned int f_lm = 0;
604         unsigned int f_xfd = 0;
605 #endif
606         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
607
608         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
609                      sizeof(boot_cpu_data.x86_capability));
610
611         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
612                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
613
614         kvm_cpu_cap_mask(CPUID_1_ECX,
615                 /*
616                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
617                  * advertised to guests via CPUID!
618                  */
619                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
620                 0 /* DS-CPL, VMX, SMX, EST */ |
621                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
622                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
623                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
624                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
625                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
626                 F(F16C) | F(RDRAND)
627         );
628         /* KVM emulates x2apic in software irrespective of host support. */
629         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
630
631         kvm_cpu_cap_mask(CPUID_1_EDX,
632                 F(FPU) | F(VME) | F(DE) | F(PSE) |
633                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
634                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
635                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
636                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
637                 0 /* Reserved, DS, ACPI */ | F(MMX) |
638                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
639                 0 /* HTT, TM, Reserved, PBE */
640         );
641
642         kvm_cpu_cap_mask(CPUID_7_0_EBX,
643                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
644                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
645                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
646                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
647                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
648                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
649                 F(AVX512VL));
650
651         kvm_cpu_cap_mask(CPUID_7_ECX,
652                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
653                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
654                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
655                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
656                 F(SGX_LC) | F(BUS_LOCK_DETECT)
657         );
658         /* Set LA57 based on hardware capability. */
659         if (cpuid_ecx(7) & F(LA57))
660                 kvm_cpu_cap_set(X86_FEATURE_LA57);
661
662         /*
663          * PKU not yet implemented for shadow paging and requires OSPKE
664          * to be set on the host. Clear it if that is not the case
665          */
666         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
667                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
668
669         kvm_cpu_cap_mask(CPUID_7_EDX,
670                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
671                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
672                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
673                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
674                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
675         );
676
677         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
678         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
679         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
680
681         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
682                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
683         if (boot_cpu_has(X86_FEATURE_STIBP))
684                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
685         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
686                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
687
688         kvm_cpu_cap_mask(CPUID_7_1_EAX,
689                 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
690                 F(FZRM) | F(FSRS) | F(FSRC) |
691                 F(AMX_FP16) | F(AVX_IFMA) | F(LAM)
692         );
693
694         kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
695                 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
696                 F(AMX_COMPLEX)
697         );
698
699         kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
700                 F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
701                 F(BHI_CTRL) | F(MCDT_NO)
702         );
703
704         kvm_cpu_cap_mask(CPUID_D_1_EAX,
705                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
706         );
707
708         kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
709                 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
710         );
711
712         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
713                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
714                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
715                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
716                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
717                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
718         );
719
720         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
721                 F(FPU) | F(VME) | F(DE) | F(PSE) |
722                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
723                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
724                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
725                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
726                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
727                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
728                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
729         );
730
731         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
732                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
733
734         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
735                 SF(CONSTANT_TSC)
736         );
737
738         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
739                 F(CLZERO) | F(XSAVEERPTR) |
740                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
741                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
742                 F(AMD_PSFD)
743         );
744
745         /*
746          * AMD has separate bits for each SPEC_CTRL bit.
747          * arch/x86/kernel/cpu/bugs.c is kind enough to
748          * record that in cpufeatures so use them.
749          */
750         if (boot_cpu_has(X86_FEATURE_IBPB))
751                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
752         if (boot_cpu_has(X86_FEATURE_IBRS))
753                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
754         if (boot_cpu_has(X86_FEATURE_STIBP))
755                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
756         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
757                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
758         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
759                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
760         /*
761          * The preference is to use SPEC CTRL MSR instead of the
762          * VIRT_SPEC MSR.
763          */
764         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
765             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
766                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
767
768         /*
769          * Hide all SVM features by default, SVM will set the cap bits for
770          * features it emulates and/or exposes for L1.
771          */
772         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
773
774         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
775                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
776                 F(SME_COHERENT));
777
778         kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
779                 F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
780                 F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
781                 F(WRMSR_XX_BASE_NS)
782         );
783
784         kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
785         kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
786         kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
787
788         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
789                 F(PERFMON_V2)
790         );
791
792         /*
793          * Synthesize "LFENCE is serializing" into the AMD-defined entry in
794          * KVM's supported CPUID if the feature is reported as supported by the
795          * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
796          * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
797          * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
798          * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
799          * the mask with the raw host CPUID, and reporting support in AMD's
800          * leaf can make it easier for userspace to detect the feature.
801          */
802         if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
803                 kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
804         if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
805                 kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
806         kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
807
808         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
809                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
810                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
811                 F(PMM) | F(PMM_EN)
812         );
813
814         /*
815          * Hide RDTSCP and RDPID if either feature is reported as supported but
816          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
817          * should never happen, but the guest will likely crash if RDTSCP or
818          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
819          * the past.  For example, the sanity check may fire if this instance of
820          * KVM is running as L1 on top of an older, broken KVM.
821          */
822         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
823                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
824                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
825                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
826                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
827         }
828 }
829 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
830
831 struct kvm_cpuid_array {
832         struct kvm_cpuid_entry2 *entries;
833         int maxnent;
834         int nent;
835 };
836
837 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
838 {
839         if (array->nent >= array->maxnent)
840                 return NULL;
841
842         return &array->entries[array->nent++];
843 }
844
845 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
846                                               u32 function, u32 index)
847 {
848         struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
849
850         if (!entry)
851                 return NULL;
852
853         memset(entry, 0, sizeof(*entry));
854         entry->function = function;
855         entry->index = index;
856         switch (function & 0xC0000000) {
857         case 0x40000000:
858                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
859                 return entry;
860
861         case 0x80000000:
862                 /*
863                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
864                  * would result in out-of-bounds calls to do_host_cpuid.
865                  */
866                 {
867                         static int max_cpuid_80000000;
868                         if (!READ_ONCE(max_cpuid_80000000))
869                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
870                         if (function > READ_ONCE(max_cpuid_80000000))
871                                 return entry;
872                 }
873                 break;
874
875         default:
876                 break;
877         }
878
879         cpuid_count(entry->function, entry->index,
880                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
881
882         if (cpuid_function_is_indexed(function))
883                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
884
885         return entry;
886 }
887
888 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
889 {
890         struct kvm_cpuid_entry2 *entry;
891
892         if (array->nent >= array->maxnent)
893                 return -E2BIG;
894
895         entry = &array->entries[array->nent];
896         entry->function = func;
897         entry->index = 0;
898         entry->flags = 0;
899
900         switch (func) {
901         case 0:
902                 entry->eax = 7;
903                 ++array->nent;
904                 break;
905         case 1:
906                 entry->ecx = F(MOVBE);
907                 ++array->nent;
908                 break;
909         case 7:
910                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
911                 entry->eax = 0;
912                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
913                         entry->ecx = F(RDPID);
914                 ++array->nent;
915                 break;
916         default:
917                 break;
918         }
919
920         return 0;
921 }
922
923 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
924 {
925         struct kvm_cpuid_entry2 *entry;
926         int r, i, max_idx;
927
928         /* all calls to cpuid_count() should be made on the same cpu */
929         get_cpu();
930
931         r = -E2BIG;
932
933         entry = do_host_cpuid(array, function, 0);
934         if (!entry)
935                 goto out;
936
937         switch (function) {
938         case 0:
939                 /* Limited to the highest leaf implemented in KVM. */
940                 entry->eax = min(entry->eax, 0x1fU);
941                 break;
942         case 1:
943                 cpuid_entry_override(entry, CPUID_1_EDX);
944                 cpuid_entry_override(entry, CPUID_1_ECX);
945                 break;
946         case 2:
947                 /*
948                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
949                  * CPUID(function=2, index=0) may return different results each
950                  * time, with the least-significant byte in EAX enumerating the
951                  * number of times software should do CPUID(2, 0).
952                  *
953                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
954                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
955                  * return 01H. Software should ignore this value and not
956                  * interpret it as an informational descriptor", while AMD's
957                  * APM states that CPUID(2) is reserved.
958                  *
959                  * WARN if a frankenstein CPU that supports virtualization and
960                  * a stateful CPUID.0x2 is encountered.
961                  */
962                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
963                 break;
964         /* functions 4 and 0x8000001d have additional index. */
965         case 4:
966         case 0x8000001d:
967                 /*
968                  * Read entries until the cache type in the previous entry is
969                  * zero, i.e. indicates an invalid entry.
970                  */
971                 for (i = 1; entry->eax & 0x1f; ++i) {
972                         entry = do_host_cpuid(array, function, i);
973                         if (!entry)
974                                 goto out;
975                 }
976                 break;
977         case 6: /* Thermal management */
978                 entry->eax = 0x4; /* allow ARAT */
979                 entry->ebx = 0;
980                 entry->ecx = 0;
981                 entry->edx = 0;
982                 break;
983         /* function 7 has additional index. */
984         case 7:
985                 max_idx = entry->eax = min(entry->eax, 2u);
986                 cpuid_entry_override(entry, CPUID_7_0_EBX);
987                 cpuid_entry_override(entry, CPUID_7_ECX);
988                 cpuid_entry_override(entry, CPUID_7_EDX);
989
990                 /* KVM only supports up to 0x7.2, capped above via min(). */
991                 if (max_idx >= 1) {
992                         entry = do_host_cpuid(array, function, 1);
993                         if (!entry)
994                                 goto out;
995
996                         cpuid_entry_override(entry, CPUID_7_1_EAX);
997                         cpuid_entry_override(entry, CPUID_7_1_EDX);
998                         entry->ebx = 0;
999                         entry->ecx = 0;
1000                 }
1001                 if (max_idx >= 2) {
1002                         entry = do_host_cpuid(array, function, 2);
1003                         if (!entry)
1004                                 goto out;
1005
1006                         cpuid_entry_override(entry, CPUID_7_2_EDX);
1007                         entry->ecx = 0;
1008                         entry->ebx = 0;
1009                         entry->eax = 0;
1010                 }
1011                 break;
1012         case 0xa: { /* Architectural Performance Monitoring */
1013                 union cpuid10_eax eax;
1014                 union cpuid10_edx edx;
1015
1016                 if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1017                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1018                         break;
1019                 }
1020
1021                 eax.split.version_id = kvm_pmu_cap.version;
1022                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1023                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1024                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1025                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1026                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1027
1028                 if (kvm_pmu_cap.version)
1029                         edx.split.anythread_deprecated = 1;
1030                 edx.split.reserved1 = 0;
1031                 edx.split.reserved2 = 0;
1032
1033                 entry->eax = eax.full;
1034                 entry->ebx = kvm_pmu_cap.events_mask;
1035                 entry->ecx = 0;
1036                 entry->edx = edx.full;
1037                 break;
1038         }
1039         case 0x1f:
1040         case 0xb:
1041                 /*
1042                  * No topology; a valid topology is indicated by the presence
1043                  * of subleaf 1.
1044                  */
1045                 entry->eax = entry->ebx = entry->ecx = 0;
1046                 break;
1047         case 0xd: {
1048                 u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1049                 u64 permitted_xss = kvm_caps.supported_xss;
1050
1051                 entry->eax &= permitted_xcr0;
1052                 entry->ebx = xstate_required_size(permitted_xcr0, false);
1053                 entry->ecx = entry->ebx;
1054                 entry->edx &= permitted_xcr0 >> 32;
1055                 if (!permitted_xcr0)
1056                         break;
1057
1058                 entry = do_host_cpuid(array, function, 1);
1059                 if (!entry)
1060                         goto out;
1061
1062                 cpuid_entry_override(entry, CPUID_D_1_EAX);
1063                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1064                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1065                                                           true);
1066                 else {
1067                         WARN_ON_ONCE(permitted_xss != 0);
1068                         entry->ebx = 0;
1069                 }
1070                 entry->ecx &= permitted_xss;
1071                 entry->edx &= permitted_xss >> 32;
1072
1073                 for (i = 2; i < 64; ++i) {
1074                         bool s_state;
1075                         if (permitted_xcr0 & BIT_ULL(i))
1076                                 s_state = false;
1077                         else if (permitted_xss & BIT_ULL(i))
1078                                 s_state = true;
1079                         else
1080                                 continue;
1081
1082                         entry = do_host_cpuid(array, function, i);
1083                         if (!entry)
1084                                 goto out;
1085
1086                         /*
1087                          * The supported check above should have filtered out
1088                          * invalid sub-leafs.  Only valid sub-leafs should
1089                          * reach this point, and they should have a non-zero
1090                          * save state size.  Furthermore, check whether the
1091                          * processor agrees with permitted_xcr0/permitted_xss
1092                          * on whether this is an XCR0- or IA32_XSS-managed area.
1093                          */
1094                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1095                                 --array->nent;
1096                                 continue;
1097                         }
1098
1099                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1100                                 entry->ecx &= ~BIT_ULL(2);
1101                         entry->edx = 0;
1102                 }
1103                 break;
1104         }
1105         case 0x12:
1106                 /* Intel SGX */
1107                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1108                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1109                         break;
1110                 }
1111
1112                 /*
1113                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1114                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1115                  * are restricted by kernel and KVM capabilities (like most
1116                  * feature flags), while enclave size is unrestricted.
1117                  */
1118                 cpuid_entry_override(entry, CPUID_12_EAX);
1119                 entry->ebx &= SGX_MISC_EXINFO;
1120
1121                 entry = do_host_cpuid(array, function, 1);
1122                 if (!entry)
1123                         goto out;
1124
1125                 /*
1126                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1127                  * feature flags.  Advertise all supported flags, including
1128                  * privileged attributes that require explicit opt-in from
1129                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1130                  * expected to derive it from supported XCR0.
1131                  */
1132                 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1133                 entry->ebx &= 0;
1134                 break;
1135         /* Intel PT */
1136         case 0x14:
1137                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1138                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1139                         break;
1140                 }
1141
1142                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1143                         if (!do_host_cpuid(array, function, i))
1144                                 goto out;
1145                 }
1146                 break;
1147         /* Intel AMX TILE */
1148         case 0x1d:
1149                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1150                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1151                         break;
1152                 }
1153
1154                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1155                         if (!do_host_cpuid(array, function, i))
1156                                 goto out;
1157                 }
1158                 break;
1159         case 0x1e: /* TMUL information */
1160                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1161                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1162                         break;
1163                 }
1164                 break;
1165         case KVM_CPUID_SIGNATURE: {
1166                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1167                 entry->eax = KVM_CPUID_FEATURES;
1168                 entry->ebx = sigptr[0];
1169                 entry->ecx = sigptr[1];
1170                 entry->edx = sigptr[2];
1171                 break;
1172         }
1173         case KVM_CPUID_FEATURES:
1174                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1175                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1176                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1177                              (1 << KVM_FEATURE_ASYNC_PF) |
1178                              (1 << KVM_FEATURE_PV_EOI) |
1179                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1180                              (1 << KVM_FEATURE_PV_UNHALT) |
1181                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1182                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1183                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1184                              (1 << KVM_FEATURE_POLL_CONTROL) |
1185                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1186                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1187
1188                 if (sched_info_on())
1189                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1190
1191                 entry->ebx = 0;
1192                 entry->ecx = 0;
1193                 entry->edx = 0;
1194                 break;
1195         case 0x80000000:
1196                 entry->eax = min(entry->eax, 0x80000022);
1197                 /*
1198                  * Serializing LFENCE is reported in a multitude of ways, and
1199                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1200                  * userspace by providing the CPUID leaf ourselves.
1201                  *
1202                  * However, only do it if the host has CPUID leaf 0x8000001d.
1203                  * QEMU thinks that it can query the host blindly for that
1204                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1205                  * above.  The processor merrily returns values from the
1206                  * highest Intel leaf which QEMU tries to use as the guest's
1207                  * 0x8000001d.  Even worse, this can result in an infinite
1208                  * loop if said highest leaf has no subleaves indexed by ECX.
1209                  */
1210                 if (entry->eax >= 0x8000001d &&
1211                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1212                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1213                         entry->eax = max(entry->eax, 0x80000021);
1214                 break;
1215         case 0x80000001:
1216                 entry->ebx &= ~GENMASK(27, 16);
1217                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1218                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1219                 break;
1220         case 0x80000005:
1221                 /*  Pass host L1 cache and TLB info. */
1222                 break;
1223         case 0x80000006:
1224                 /* Drop reserved bits, pass host L2 cache and TLB info. */
1225                 entry->edx &= ~GENMASK(17, 16);
1226                 break;
1227         case 0x80000007: /* Advanced power management */
1228                 cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1229
1230                 /* mask against host */
1231                 entry->edx &= boot_cpu_data.x86_power;
1232                 entry->eax = entry->ebx = entry->ecx = 0;
1233                 break;
1234         case 0x80000008: {
1235                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1236                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1237                 unsigned phys_as = entry->eax & 0xff;
1238
1239                 /*
1240                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1241                  * the guest operates in the same PA space as the host, i.e.
1242                  * reductions in MAXPHYADDR for memory encryption affect shadow
1243                  * paging, too.
1244                  *
1245                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1246                  * provided, use the raw bare metal MAXPHYADDR as reductions to
1247                  * the HPAs do not affect GPAs.
1248                  */
1249                 if (!tdp_enabled)
1250                         g_phys_as = boot_cpu_data.x86_phys_bits;
1251                 else if (!g_phys_as)
1252                         g_phys_as = phys_as;
1253
1254                 entry->eax = g_phys_as | (virt_as << 8);
1255                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1256                 entry->edx = 0;
1257                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1258                 break;
1259         }
1260         case 0x8000000A:
1261                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1262                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1263                         break;
1264                 }
1265                 entry->eax = 1; /* SVM revision 1 */
1266                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1267                                    ASID emulation to nested SVM */
1268                 entry->ecx = 0; /* Reserved */
1269                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1270                 break;
1271         case 0x80000019:
1272                 entry->ecx = entry->edx = 0;
1273                 break;
1274         case 0x8000001a:
1275                 entry->eax &= GENMASK(2, 0);
1276                 entry->ebx = entry->ecx = entry->edx = 0;
1277                 break;
1278         case 0x8000001e:
1279                 /* Do not return host topology information.  */
1280                 entry->eax = entry->ebx = entry->ecx = 0;
1281                 entry->edx = 0; /* reserved */
1282                 break;
1283         case 0x8000001F:
1284                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1285                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1286                 } else {
1287                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1288                         /* Clear NumVMPL since KVM does not support VMPL.  */
1289                         entry->ebx &= ~GENMASK(31, 12);
1290                         /*
1291                          * Enumerate '0' for "PA bits reduction", the adjusted
1292                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1293                          */
1294                         entry->ebx &= ~GENMASK(11, 6);
1295                 }
1296                 break;
1297         case 0x80000020:
1298                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1299                 break;
1300         case 0x80000021:
1301                 entry->ebx = entry->ecx = entry->edx = 0;
1302                 cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1303                 break;
1304         /* AMD Extended Performance Monitoring and Debug */
1305         case 0x80000022: {
1306                 union cpuid_0x80000022_ebx ebx;
1307
1308                 entry->ecx = entry->edx = 0;
1309                 if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1310                         entry->eax = entry->ebx;
1311                         break;
1312                 }
1313
1314                 cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1315
1316                 if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1317                         ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1318                 else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1319                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1320                 else
1321                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1322
1323                 entry->ebx = ebx.full;
1324                 break;
1325         }
1326         /*Add support for Centaur's CPUID instruction*/
1327         case 0xC0000000:
1328                 /*Just support up to 0xC0000004 now*/
1329                 entry->eax = min(entry->eax, 0xC0000004);
1330                 break;
1331         case 0xC0000001:
1332                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1333                 break;
1334         case 3: /* Processor serial number */
1335         case 5: /* MONITOR/MWAIT */
1336         case 0xC0000002:
1337         case 0xC0000003:
1338         case 0xC0000004:
1339         default:
1340                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1341                 break;
1342         }
1343
1344         r = 0;
1345
1346 out:
1347         put_cpu();
1348
1349         return r;
1350 }
1351
1352 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1353                          unsigned int type)
1354 {
1355         if (type == KVM_GET_EMULATED_CPUID)
1356                 return __do_cpuid_func_emulated(array, func);
1357
1358         return __do_cpuid_func(array, func);
1359 }
1360
1361 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1362
1363 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1364                           unsigned int type)
1365 {
1366         u32 limit;
1367         int r;
1368
1369         if (func == CENTAUR_CPUID_SIGNATURE &&
1370             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1371                 return 0;
1372
1373         r = do_cpuid_func(array, func, type);
1374         if (r)
1375                 return r;
1376
1377         limit = array->entries[array->nent - 1].eax;
1378         for (func = func + 1; func <= limit; ++func) {
1379                 r = do_cpuid_func(array, func, type);
1380                 if (r)
1381                         break;
1382         }
1383
1384         return r;
1385 }
1386
1387 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1388                                  __u32 num_entries, unsigned int ioctl_type)
1389 {
1390         int i;
1391         __u32 pad[3];
1392
1393         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1394                 return false;
1395
1396         /*
1397          * We want to make sure that ->padding is being passed clean from
1398          * userspace in case we want to use it for something in the future.
1399          *
1400          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1401          * have to give ourselves satisfied only with the emulated side. /me
1402          * sheds a tear.
1403          */
1404         for (i = 0; i < num_entries; i++) {
1405                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1406                         return true;
1407
1408                 if (pad[0] || pad[1] || pad[2])
1409                         return true;
1410         }
1411         return false;
1412 }
1413
1414 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1415                             struct kvm_cpuid_entry2 __user *entries,
1416                             unsigned int type)
1417 {
1418         static const u32 funcs[] = {
1419                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1420         };
1421
1422         struct kvm_cpuid_array array = {
1423                 .nent = 0,
1424         };
1425         int r, i;
1426
1427         if (cpuid->nent < 1)
1428                 return -E2BIG;
1429         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1430                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1431
1432         if (sanity_check_entries(entries, cpuid->nent, type))
1433                 return -EINVAL;
1434
1435         array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1436         if (!array.entries)
1437                 return -ENOMEM;
1438
1439         array.maxnent = cpuid->nent;
1440
1441         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1442                 r = get_cpuid_func(&array, funcs[i], type);
1443                 if (r)
1444                         goto out_free;
1445         }
1446         cpuid->nent = array.nent;
1447
1448         if (copy_to_user(entries, array.entries,
1449                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1450                 r = -EFAULT;
1451
1452 out_free:
1453         kvfree(array.entries);
1454         return r;
1455 }
1456
1457 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1458                                                     u32 function, u32 index)
1459 {
1460         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1461                                  function, index);
1462 }
1463 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1464
1465 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1466                                               u32 function)
1467 {
1468         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1469                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1472
1473 /*
1474  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1475  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1476  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1477  * range.  Centaur/VIA follows Intel semantics.
1478  *
1479  * A leaf is considered out-of-range if its function is higher than the maximum
1480  * supported leaf of its associated class or if its associated class does not
1481  * exist.
1482  *
1483  * There are three primary classes to be considered, with their respective
1484  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1485  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1486  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1487  *
1488  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1489  *  - Hypervisor: 0x40000000 - 0x4fffffff
1490  *  - Extended:   0x80000000 - 0xbfffffff
1491  *  - Centaur:    0xc0000000 - 0xcfffffff
1492  *
1493  * The Hypervisor class is further subdivided into sub-classes that each act as
1494  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1495  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1496  * CPUID sub-classes are:
1497  *
1498  *  - HyperV:     0x40000000 - 0x400000ff
1499  *  - KVM:        0x40000100 - 0x400001ff
1500  */
1501 static struct kvm_cpuid_entry2 *
1502 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1503 {
1504         struct kvm_cpuid_entry2 *basic, *class;
1505         u32 function = *fn_ptr;
1506
1507         basic = kvm_find_cpuid_entry(vcpu, 0);
1508         if (!basic)
1509                 return NULL;
1510
1511         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1512             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1513                 return NULL;
1514
1515         if (function >= 0x40000000 && function <= 0x4fffffff)
1516                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1517         else if (function >= 0xc0000000)
1518                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1519         else
1520                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1521
1522         if (class && function <= class->eax)
1523                 return NULL;
1524
1525         /*
1526          * Leaf specific adjustments are also applied when redirecting to the
1527          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1528          * entry for CPUID.0xb.index (see below), then the output value for EDX
1529          * needs to be pulled from CPUID.0xb.1.
1530          */
1531         *fn_ptr = basic->eax;
1532
1533         /*
1534          * The class does not exist or the requested function is out of range;
1535          * the effective CPUID entry is the max basic leaf.  Note, the index of
1536          * the original requested leaf is observed!
1537          */
1538         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1539 }
1540
1541 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1542                u32 *ecx, u32 *edx, bool exact_only)
1543 {
1544         u32 orig_function = *eax, function = *eax, index = *ecx;
1545         struct kvm_cpuid_entry2 *entry;
1546         bool exact, used_max_basic = false;
1547
1548         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1549         exact = !!entry;
1550
1551         if (!entry && !exact_only) {
1552                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1553                 used_max_basic = !!entry;
1554         }
1555
1556         if (entry) {
1557                 *eax = entry->eax;
1558                 *ebx = entry->ebx;
1559                 *ecx = entry->ecx;
1560                 *edx = entry->edx;
1561                 if (function == 7 && index == 0) {
1562                         u64 data;
1563                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1564                             (data & TSX_CTRL_CPUID_CLEAR))
1565                                 *ebx &= ~(F(RTM) | F(HLE));
1566                 } else if (function == 0x80000007) {
1567                         if (kvm_hv_invtsc_suppressed(vcpu))
1568                                 *edx &= ~SF(CONSTANT_TSC);
1569                 }
1570         } else {
1571                 *eax = *ebx = *ecx = *edx = 0;
1572                 /*
1573                  * When leaf 0BH or 1FH is defined, CL is pass-through
1574                  * and EDX is always the x2APIC ID, even for undefined
1575                  * subleaves. Index 1 will exist iff the leaf is
1576                  * implemented, so we pass through CL iff leaf 1
1577                  * exists. EDX can be copied from any existing index.
1578                  */
1579                 if (function == 0xb || function == 0x1f) {
1580                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1581                         if (entry) {
1582                                 *ecx = index & 0xff;
1583                                 *edx = entry->edx;
1584                         }
1585                 }
1586         }
1587         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1588                         used_max_basic);
1589         return exact;
1590 }
1591 EXPORT_SYMBOL_GPL(kvm_cpuid);
1592
1593 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1594 {
1595         u32 eax, ebx, ecx, edx;
1596
1597         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1598                 return 1;
1599
1600         eax = kvm_rax_read(vcpu);
1601         ecx = kvm_rcx_read(vcpu);
1602         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1603         kvm_rax_write(vcpu, eax);
1604         kvm_rbx_write(vcpu, ebx);
1605         kvm_rcx_write(vcpu, ecx);
1606         kvm_rdx_write(vcpu, edx);
1607         return kvm_skip_emulated_instruction(vcpu);
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);