Merge tag 'driver-core-6.9-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/fred.h>
65 #include <asm/uv/uv.h>
66 #include <asm/ia32.h>
67 #include <asm/set_memory.h>
68 #include <asm/traps.h>
69 #include <asm/sev.h>
70 #include <asm/tdx.h>
71
72 #include "cpu.h"
73
74 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
75 EXPORT_PER_CPU_SYMBOL(cpu_info);
76
77 u32 elf_hwcap2 __read_mostly;
78
79 /* Number of siblings per CPU package */
80 unsigned int __max_threads_per_core __ro_after_init = 1;
81 EXPORT_SYMBOL(__max_threads_per_core);
82
83 unsigned int __max_dies_per_package __ro_after_init = 1;
84 EXPORT_SYMBOL(__max_dies_per_package);
85
86 unsigned int __max_logical_packages __ro_after_init = 1;
87 EXPORT_SYMBOL(__max_logical_packages);
88
89 unsigned int __num_cores_per_package __ro_after_init = 1;
90 EXPORT_SYMBOL(__num_cores_per_package);
91
92 unsigned int __num_threads_per_package __ro_after_init = 1;
93 EXPORT_SYMBOL(__num_threads_per_package);
94
95 static struct ppin_info {
96         int     feature;
97         int     msr_ppin_ctl;
98         int     msr_ppin;
99 } ppin_info[] = {
100         [X86_VENDOR_INTEL] = {
101                 .feature = X86_FEATURE_INTEL_PPIN,
102                 .msr_ppin_ctl = MSR_PPIN_CTL,
103                 .msr_ppin = MSR_PPIN
104         },
105         [X86_VENDOR_AMD] = {
106                 .feature = X86_FEATURE_AMD_PPIN,
107                 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
108                 .msr_ppin = MSR_AMD_PPIN
109         },
110 };
111
112 static const struct x86_cpu_id ppin_cpuids[] = {
113         X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
114         X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
115
116         /* Legacy models without CPUID enumeration */
117         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
118         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
119         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
120         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
121         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
122         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
123         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
124         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
125         X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
126         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
127         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
128
129         {}
130 };
131
132 static void ppin_init(struct cpuinfo_x86 *c)
133 {
134         const struct x86_cpu_id *id;
135         unsigned long long val;
136         struct ppin_info *info;
137
138         id = x86_match_cpu(ppin_cpuids);
139         if (!id)
140                 return;
141
142         /*
143          * Testing the presence of the MSR is not enough. Need to check
144          * that the PPIN_CTL allows reading of the PPIN.
145          */
146         info = (struct ppin_info *)id->driver_data;
147
148         if (rdmsrl_safe(info->msr_ppin_ctl, &val))
149                 goto clear_ppin;
150
151         if ((val & 3UL) == 1UL) {
152                 /* PPIN locked in disabled mode */
153                 goto clear_ppin;
154         }
155
156         /* If PPIN is disabled, try to enable */
157         if (!(val & 2UL)) {
158                 wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
159                 rdmsrl_safe(info->msr_ppin_ctl, &val);
160         }
161
162         /* Is the enable bit set? */
163         if (val & 2UL) {
164                 c->ppin = __rdmsr(info->msr_ppin);
165                 set_cpu_cap(c, info->feature);
166                 return;
167         }
168
169 clear_ppin:
170         clear_cpu_cap(c, info->feature);
171 }
172
173 static void default_init(struct cpuinfo_x86 *c)
174 {
175 #ifdef CONFIG_X86_64
176         cpu_detect_cache_sizes(c);
177 #else
178         /* Not much we can do here... */
179         /* Check if at least it has cpuid */
180         if (c->cpuid_level == -1) {
181                 /* No cpuid. It must be an ancient CPU */
182                 if (c->x86 == 4)
183                         strcpy(c->x86_model_id, "486");
184                 else if (c->x86 == 3)
185                         strcpy(c->x86_model_id, "386");
186         }
187 #endif
188 }
189
190 static const struct cpu_dev default_cpu = {
191         .c_init         = default_init,
192         .c_vendor       = "Unknown",
193         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
194 };
195
196 static const struct cpu_dev *this_cpu = &default_cpu;
197
198 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
199 #ifdef CONFIG_X86_64
200         /*
201          * We need valid kernel segments for data and code in long mode too
202          * IRET will check the segment types  kkeil 2000/10/28
203          * Also sysret mandates a special GDT layout
204          *
205          * TLS descriptors are currently at a different place compared to i386.
206          * Hopefully nobody expects them at a fixed place (Wine?)
207          */
208         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
209         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
210         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
211         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
212         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
213         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
214 #else
215         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
216         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
217         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
218         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
219         /*
220          * Segments used for calling PnP BIOS have byte granularity.
221          * They code segments and data segments have fixed 64k limits,
222          * the transfer segment sizes are set at run time.
223          */
224         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
225         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
226         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
227         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
228         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
229         /*
230          * The APM segments have byte granularity and their bases
231          * are set at run time.  All have 64k limits.
232          */
233         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
234         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
235         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
236
237         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
238         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
239 #endif
240 } };
241 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
242
243 #ifdef CONFIG_X86_64
244 static int __init x86_nopcid_setup(char *s)
245 {
246         /* nopcid doesn't accept parameters */
247         if (s)
248                 return -EINVAL;
249
250         /* do not emit a message if the feature is not present */
251         if (!boot_cpu_has(X86_FEATURE_PCID))
252                 return 0;
253
254         setup_clear_cpu_cap(X86_FEATURE_PCID);
255         pr_info("nopcid: PCID feature disabled\n");
256         return 0;
257 }
258 early_param("nopcid", x86_nopcid_setup);
259 #endif
260
261 static int __init x86_noinvpcid_setup(char *s)
262 {
263         /* noinvpcid doesn't accept parameters */
264         if (s)
265                 return -EINVAL;
266
267         /* do not emit a message if the feature is not present */
268         if (!boot_cpu_has(X86_FEATURE_INVPCID))
269                 return 0;
270
271         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
272         pr_info("noinvpcid: INVPCID feature disabled\n");
273         return 0;
274 }
275 early_param("noinvpcid", x86_noinvpcid_setup);
276
277 #ifdef CONFIG_X86_32
278 static int cachesize_override = -1;
279 static int disable_x86_serial_nr = 1;
280
281 static int __init cachesize_setup(char *str)
282 {
283         get_option(&str, &cachesize_override);
284         return 1;
285 }
286 __setup("cachesize=", cachesize_setup);
287
288 /* Standard macro to see if a specific flag is changeable */
289 static inline int flag_is_changeable_p(u32 flag)
290 {
291         u32 f1, f2;
292
293         /*
294          * Cyrix and IDT cpus allow disabling of CPUID
295          * so the code below may return different results
296          * when it is executed before and after enabling
297          * the CPUID. Add "volatile" to not allow gcc to
298          * optimize the subsequent calls to this function.
299          */
300         asm volatile ("pushfl           \n\t"
301                       "pushfl           \n\t"
302                       "popl %0          \n\t"
303                       "movl %0, %1      \n\t"
304                       "xorl %2, %0      \n\t"
305                       "pushl %0         \n\t"
306                       "popfl            \n\t"
307                       "pushfl           \n\t"
308                       "popl %0          \n\t"
309                       "popfl            \n\t"
310
311                       : "=&r" (f1), "=&r" (f2)
312                       : "ir" (flag));
313
314         return ((f1^f2) & flag) != 0;
315 }
316
317 /* Probe for the CPUID instruction */
318 int have_cpuid_p(void)
319 {
320         return flag_is_changeable_p(X86_EFLAGS_ID);
321 }
322
323 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
324 {
325         unsigned long lo, hi;
326
327         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
328                 return;
329
330         /* Disable processor serial number: */
331
332         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
333         lo |= 0x200000;
334         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
335
336         pr_notice("CPU serial number disabled.\n");
337         clear_cpu_cap(c, X86_FEATURE_PN);
338
339         /* Disabling the serial number may affect the cpuid level */
340         c->cpuid_level = cpuid_eax(0);
341 }
342
343 static int __init x86_serial_nr_setup(char *s)
344 {
345         disable_x86_serial_nr = 0;
346         return 1;
347 }
348 __setup("serialnumber", x86_serial_nr_setup);
349 #else
350 static inline int flag_is_changeable_p(u32 flag)
351 {
352         return 1;
353 }
354 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
355 {
356 }
357 #endif
358
359 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
360 {
361         if (cpu_has(c, X86_FEATURE_SMEP))
362                 cr4_set_bits(X86_CR4_SMEP);
363 }
364
365 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
366 {
367         unsigned long eflags = native_save_fl();
368
369         /* This should have been cleared long ago */
370         BUG_ON(eflags & X86_EFLAGS_AC);
371
372         if (cpu_has(c, X86_FEATURE_SMAP))
373                 cr4_set_bits(X86_CR4_SMAP);
374 }
375
376 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
377 {
378         /* Check the boot processor, plus build option for UMIP. */
379         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
380                 goto out;
381
382         /* Check the current processor's cpuid bits. */
383         if (!cpu_has(c, X86_FEATURE_UMIP))
384                 goto out;
385
386         cr4_set_bits(X86_CR4_UMIP);
387
388         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
389
390         return;
391
392 out:
393         /*
394          * Make sure UMIP is disabled in case it was enabled in a
395          * previous boot (e.g., via kexec).
396          */
397         cr4_clear_bits(X86_CR4_UMIP);
398 }
399
400 /* These bits should not change their value after CPU init is finished. */
401 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
402                                              X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
403 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
404 static unsigned long cr4_pinned_bits __ro_after_init;
405
406 void native_write_cr0(unsigned long val)
407 {
408         unsigned long bits_missing = 0;
409
410 set_register:
411         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
412
413         if (static_branch_likely(&cr_pinning)) {
414                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
415                         bits_missing = X86_CR0_WP;
416                         val |= bits_missing;
417                         goto set_register;
418                 }
419                 /* Warn after we've set the missing bits. */
420                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
421         }
422 }
423 EXPORT_SYMBOL(native_write_cr0);
424
425 void __no_profile native_write_cr4(unsigned long val)
426 {
427         unsigned long bits_changed = 0;
428
429 set_register:
430         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
431
432         if (static_branch_likely(&cr_pinning)) {
433                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
434                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
435                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
436                         goto set_register;
437                 }
438                 /* Warn after we've corrected the changed bits. */
439                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
440                           bits_changed);
441         }
442 }
443 #if IS_MODULE(CONFIG_LKDTM)
444 EXPORT_SYMBOL_GPL(native_write_cr4);
445 #endif
446
447 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
448 {
449         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
450
451         lockdep_assert_irqs_disabled();
452
453         newval = (cr4 & ~clear) | set;
454         if (newval != cr4) {
455                 this_cpu_write(cpu_tlbstate.cr4, newval);
456                 __write_cr4(newval);
457         }
458 }
459 EXPORT_SYMBOL(cr4_update_irqsoff);
460
461 /* Read the CR4 shadow. */
462 unsigned long cr4_read_shadow(void)
463 {
464         return this_cpu_read(cpu_tlbstate.cr4);
465 }
466 EXPORT_SYMBOL_GPL(cr4_read_shadow);
467
468 void cr4_init(void)
469 {
470         unsigned long cr4 = __read_cr4();
471
472         if (boot_cpu_has(X86_FEATURE_PCID))
473                 cr4 |= X86_CR4_PCIDE;
474         if (static_branch_likely(&cr_pinning))
475                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
476
477         __write_cr4(cr4);
478
479         /* Initialize cr4 shadow for this CPU. */
480         this_cpu_write(cpu_tlbstate.cr4, cr4);
481 }
482
483 /*
484  * Once CPU feature detection is finished (and boot params have been
485  * parsed), record any of the sensitive CR bits that are set, and
486  * enable CR pinning.
487  */
488 static void __init setup_cr_pinning(void)
489 {
490         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
491         static_key_enable(&cr_pinning.key);
492 }
493
494 static __init int x86_nofsgsbase_setup(char *arg)
495 {
496         /* Require an exact match without trailing characters. */
497         if (strlen(arg))
498                 return 0;
499
500         /* Do not emit a message if the feature is not present. */
501         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
502                 return 1;
503
504         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
505         pr_info("FSGSBASE disabled via kernel command line\n");
506         return 1;
507 }
508 __setup("nofsgsbase", x86_nofsgsbase_setup);
509
510 /*
511  * Protection Keys are not available in 32-bit mode.
512  */
513 static bool pku_disabled;
514
515 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
516 {
517         if (c == &boot_cpu_data) {
518                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
519                         return;
520                 /*
521                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
522                  * bit to be set.  Enforce it.
523                  */
524                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
525
526         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
527                 return;
528         }
529
530         cr4_set_bits(X86_CR4_PKE);
531         /* Load the default PKRU value */
532         pkru_write_default();
533 }
534
535 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
536 static __init int setup_disable_pku(char *arg)
537 {
538         /*
539          * Do not clear the X86_FEATURE_PKU bit.  All of the
540          * runtime checks are against OSPKE so clearing the
541          * bit does nothing.
542          *
543          * This way, we will see "pku" in cpuinfo, but not
544          * "ospke", which is exactly what we want.  It shows
545          * that the CPU has PKU, but the OS has not enabled it.
546          * This happens to be exactly how a system would look
547          * if we disabled the config option.
548          */
549         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
550         pku_disabled = true;
551         return 1;
552 }
553 __setup("nopku", setup_disable_pku);
554 #endif
555
556 #ifdef CONFIG_X86_KERNEL_IBT
557
558 __noendbr u64 ibt_save(bool disable)
559 {
560         u64 msr = 0;
561
562         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
563                 rdmsrl(MSR_IA32_S_CET, msr);
564                 if (disable)
565                         wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
566         }
567
568         return msr;
569 }
570
571 __noendbr void ibt_restore(u64 save)
572 {
573         u64 msr;
574
575         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
576                 rdmsrl(MSR_IA32_S_CET, msr);
577                 msr &= ~CET_ENDBR_EN;
578                 msr |= (save & CET_ENDBR_EN);
579                 wrmsrl(MSR_IA32_S_CET, msr);
580         }
581 }
582
583 #endif
584
585 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
586 {
587         bool user_shstk, kernel_ibt;
588
589         if (!IS_ENABLED(CONFIG_X86_CET))
590                 return;
591
592         kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
593         user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
594                      IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
595
596         if (!kernel_ibt && !user_shstk)
597                 return;
598
599         if (user_shstk)
600                 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
601
602         if (kernel_ibt)
603                 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
604         else
605                 wrmsrl(MSR_IA32_S_CET, 0);
606
607         cr4_set_bits(X86_CR4_CET);
608
609         if (kernel_ibt && ibt_selftest()) {
610                 pr_err("IBT selftest: Failed!\n");
611                 wrmsrl(MSR_IA32_S_CET, 0);
612                 setup_clear_cpu_cap(X86_FEATURE_IBT);
613         }
614 }
615
616 __noendbr void cet_disable(void)
617 {
618         if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
619               cpu_feature_enabled(X86_FEATURE_SHSTK)))
620                 return;
621
622         wrmsrl(MSR_IA32_S_CET, 0);
623         wrmsrl(MSR_IA32_U_CET, 0);
624 }
625
626 /*
627  * Some CPU features depend on higher CPUID levels, which may not always
628  * be available due to CPUID level capping or broken virtualization
629  * software.  Add those features to this table to auto-disable them.
630  */
631 struct cpuid_dependent_feature {
632         u32 feature;
633         u32 level;
634 };
635
636 static const struct cpuid_dependent_feature
637 cpuid_dependent_features[] = {
638         { X86_FEATURE_MWAIT,            0x00000005 },
639         { X86_FEATURE_DCA,              0x00000009 },
640         { X86_FEATURE_XSAVE,            0x0000000d },
641         { 0, 0 }
642 };
643
644 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
645 {
646         const struct cpuid_dependent_feature *df;
647
648         for (df = cpuid_dependent_features; df->feature; df++) {
649
650                 if (!cpu_has(c, df->feature))
651                         continue;
652                 /*
653                  * Note: cpuid_level is set to -1 if unavailable, but
654                  * extended_extended_level is set to 0 if unavailable
655                  * and the legitimate extended levels are all negative
656                  * when signed; hence the weird messing around with
657                  * signs here...
658                  */
659                 if (!((s32)df->level < 0 ?
660                      (u32)df->level > (u32)c->extended_cpuid_level :
661                      (s32)df->level > (s32)c->cpuid_level))
662                         continue;
663
664                 clear_cpu_cap(c, df->feature);
665                 if (!warn)
666                         continue;
667
668                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
669                         x86_cap_flag(df->feature), df->level);
670         }
671 }
672
673 /*
674  * Naming convention should be: <Name> [(<Codename>)]
675  * This table only is used unless init_<vendor>() below doesn't set it;
676  * in particular, if CPUID levels 0x80000002..4 are supported, this
677  * isn't used
678  */
679
680 /* Look up CPU names by table lookup. */
681 static const char *table_lookup_model(struct cpuinfo_x86 *c)
682 {
683 #ifdef CONFIG_X86_32
684         const struct legacy_cpu_model_info *info;
685
686         if (c->x86_model >= 16)
687                 return NULL;    /* Range check */
688
689         if (!this_cpu)
690                 return NULL;
691
692         info = this_cpu->legacy_models;
693
694         while (info->family) {
695                 if (info->family == c->x86)
696                         return info->model_names[c->x86_model];
697                 info++;
698         }
699 #endif
700         return NULL;            /* Not found */
701 }
702
703 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
704 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
705 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
706
707 #ifdef CONFIG_X86_32
708 /* The 32-bit entry code needs to find cpu_entry_area. */
709 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
710 #endif
711
712 /* Load the original GDT from the per-cpu structure */
713 void load_direct_gdt(int cpu)
714 {
715         struct desc_ptr gdt_descr;
716
717         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
718         gdt_descr.size = GDT_SIZE - 1;
719         load_gdt(&gdt_descr);
720 }
721 EXPORT_SYMBOL_GPL(load_direct_gdt);
722
723 /* Load a fixmap remapping of the per-cpu GDT */
724 void load_fixmap_gdt(int cpu)
725 {
726         struct desc_ptr gdt_descr;
727
728         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
729         gdt_descr.size = GDT_SIZE - 1;
730         load_gdt(&gdt_descr);
731 }
732 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
733
734 /**
735  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
736  * @cpu:        The CPU number for which this is invoked
737  *
738  * Invoked during early boot to switch from early GDT and early per CPU to
739  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
740  * switch is implicit by loading the direct GDT. On 64bit this requires
741  * to update GSBASE.
742  */
743 void __init switch_gdt_and_percpu_base(int cpu)
744 {
745         load_direct_gdt(cpu);
746
747 #ifdef CONFIG_X86_64
748         /*
749          * No need to load %gs. It is already correct.
750          *
751          * Writing %gs on 64bit would zero GSBASE which would make any per
752          * CPU operation up to the point of the wrmsrl() fault.
753          *
754          * Set GSBASE to the new offset. Until the wrmsrl() happens the
755          * early mapping is still valid. That means the GSBASE update will
756          * lose any prior per CPU data which was not copied over in
757          * setup_per_cpu_areas().
758          *
759          * This works even with stackprotector enabled because the
760          * per CPU stack canary is 0 in both per CPU areas.
761          */
762         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
763 #else
764         /*
765          * %fs is already set to __KERNEL_PERCPU, but after switching GDT
766          * it is required to load FS again so that the 'hidden' part is
767          * updated from the new GDT. Up to this point the early per CPU
768          * translation is active. Any content of the early per CPU data
769          * which was not copied over in setup_per_cpu_areas() is lost.
770          */
771         loadsegment(fs, __KERNEL_PERCPU);
772 #endif
773 }
774
775 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
776
777 static void get_model_name(struct cpuinfo_x86 *c)
778 {
779         unsigned int *v;
780         char *p, *q, *s;
781
782         if (c->extended_cpuid_level < 0x80000004)
783                 return;
784
785         v = (unsigned int *)c->x86_model_id;
786         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
787         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
788         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
789         c->x86_model_id[48] = 0;
790
791         /* Trim whitespace */
792         p = q = s = &c->x86_model_id[0];
793
794         while (*p == ' ')
795                 p++;
796
797         while (*p) {
798                 /* Note the last non-whitespace index */
799                 if (!isspace(*p))
800                         s = q;
801
802                 *q++ = *p++;
803         }
804
805         *(s + 1) = '\0';
806 }
807
808 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
809 {
810         unsigned int n, dummy, ebx, ecx, edx, l2size;
811
812         n = c->extended_cpuid_level;
813
814         if (n >= 0x80000005) {
815                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
816                 c->x86_cache_size = (ecx>>24) + (edx>>24);
817 #ifdef CONFIG_X86_64
818                 /* On K8 L1 TLB is inclusive, so don't count it */
819                 c->x86_tlbsize = 0;
820 #endif
821         }
822
823         if (n < 0x80000006)     /* Some chips just has a large L1. */
824                 return;
825
826         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
827         l2size = ecx >> 16;
828
829 #ifdef CONFIG_X86_64
830         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
831 #else
832         /* do processor-specific cache resizing */
833         if (this_cpu->legacy_cache_size)
834                 l2size = this_cpu->legacy_cache_size(c, l2size);
835
836         /* Allow user to override all this if necessary. */
837         if (cachesize_override != -1)
838                 l2size = cachesize_override;
839
840         if (l2size == 0)
841                 return;         /* Again, no L2 cache is possible */
842 #endif
843
844         c->x86_cache_size = l2size;
845 }
846
847 u16 __read_mostly tlb_lli_4k[NR_INFO];
848 u16 __read_mostly tlb_lli_2m[NR_INFO];
849 u16 __read_mostly tlb_lli_4m[NR_INFO];
850 u16 __read_mostly tlb_lld_4k[NR_INFO];
851 u16 __read_mostly tlb_lld_2m[NR_INFO];
852 u16 __read_mostly tlb_lld_4m[NR_INFO];
853 u16 __read_mostly tlb_lld_1g[NR_INFO];
854
855 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
856 {
857         if (this_cpu->c_detect_tlb)
858                 this_cpu->c_detect_tlb(c);
859
860         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
861                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
862                 tlb_lli_4m[ENTRIES]);
863
864         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
865                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
866                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
867 }
868
869 static void get_cpu_vendor(struct cpuinfo_x86 *c)
870 {
871         char *v = c->x86_vendor_id;
872         int i;
873
874         for (i = 0; i < X86_VENDOR_NUM; i++) {
875                 if (!cpu_devs[i])
876                         break;
877
878                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
879                     (cpu_devs[i]->c_ident[1] &&
880                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
881
882                         this_cpu = cpu_devs[i];
883                         c->x86_vendor = this_cpu->c_x86_vendor;
884                         return;
885                 }
886         }
887
888         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
889                     "CPU: Your system may be unstable.\n", v);
890
891         c->x86_vendor = X86_VENDOR_UNKNOWN;
892         this_cpu = &default_cpu;
893 }
894
895 void cpu_detect(struct cpuinfo_x86 *c)
896 {
897         /* Get vendor name */
898         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
899               (unsigned int *)&c->x86_vendor_id[0],
900               (unsigned int *)&c->x86_vendor_id[8],
901               (unsigned int *)&c->x86_vendor_id[4]);
902
903         c->x86 = 4;
904         /* Intel-defined flags: level 0x00000001 */
905         if (c->cpuid_level >= 0x00000001) {
906                 u32 junk, tfms, cap0, misc;
907
908                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
909                 c->x86          = x86_family(tfms);
910                 c->x86_model    = x86_model(tfms);
911                 c->x86_stepping = x86_stepping(tfms);
912
913                 if (cap0 & (1<<19)) {
914                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
915                         c->x86_cache_alignment = c->x86_clflush_size;
916                 }
917         }
918 }
919
920 static void apply_forced_caps(struct cpuinfo_x86 *c)
921 {
922         int i;
923
924         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
925                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
926                 c->x86_capability[i] |= cpu_caps_set[i];
927         }
928 }
929
930 static void init_speculation_control(struct cpuinfo_x86 *c)
931 {
932         /*
933          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
934          * and they also have a different bit for STIBP support. Also,
935          * a hypervisor might have set the individual AMD bits even on
936          * Intel CPUs, for finer-grained selection of what's available.
937          */
938         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
939                 set_cpu_cap(c, X86_FEATURE_IBRS);
940                 set_cpu_cap(c, X86_FEATURE_IBPB);
941                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
942         }
943
944         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
945                 set_cpu_cap(c, X86_FEATURE_STIBP);
946
947         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
948             cpu_has(c, X86_FEATURE_VIRT_SSBD))
949                 set_cpu_cap(c, X86_FEATURE_SSBD);
950
951         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
952                 set_cpu_cap(c, X86_FEATURE_IBRS);
953                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
954         }
955
956         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
957                 set_cpu_cap(c, X86_FEATURE_IBPB);
958
959         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
960                 set_cpu_cap(c, X86_FEATURE_STIBP);
961                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
962         }
963
964         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
965                 set_cpu_cap(c, X86_FEATURE_SSBD);
966                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
967                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
968         }
969 }
970
971 void get_cpu_cap(struct cpuinfo_x86 *c)
972 {
973         u32 eax, ebx, ecx, edx;
974
975         /* Intel-defined flags: level 0x00000001 */
976         if (c->cpuid_level >= 0x00000001) {
977                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
978
979                 c->x86_capability[CPUID_1_ECX] = ecx;
980                 c->x86_capability[CPUID_1_EDX] = edx;
981         }
982
983         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
984         if (c->cpuid_level >= 0x00000006)
985                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
986
987         /* Additional Intel-defined flags: level 0x00000007 */
988         if (c->cpuid_level >= 0x00000007) {
989                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
990                 c->x86_capability[CPUID_7_0_EBX] = ebx;
991                 c->x86_capability[CPUID_7_ECX] = ecx;
992                 c->x86_capability[CPUID_7_EDX] = edx;
993
994                 /* Check valid sub-leaf index before accessing it */
995                 if (eax >= 1) {
996                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
997                         c->x86_capability[CPUID_7_1_EAX] = eax;
998                 }
999         }
1000
1001         /* Extended state features: level 0x0000000d */
1002         if (c->cpuid_level >= 0x0000000d) {
1003                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1004
1005                 c->x86_capability[CPUID_D_1_EAX] = eax;
1006         }
1007
1008         /* AMD-defined flags: level 0x80000001 */
1009         eax = cpuid_eax(0x80000000);
1010         c->extended_cpuid_level = eax;
1011
1012         if ((eax & 0xffff0000) == 0x80000000) {
1013                 if (eax >= 0x80000001) {
1014                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1015
1016                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1017                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
1018                 }
1019         }
1020
1021         if (c->extended_cpuid_level >= 0x80000007) {
1022                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1023
1024                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1025                 c->x86_power = edx;
1026         }
1027
1028         if (c->extended_cpuid_level >= 0x80000008) {
1029                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1030                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1031         }
1032
1033         if (c->extended_cpuid_level >= 0x8000000a)
1034                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1035
1036         if (c->extended_cpuid_level >= 0x8000001f)
1037                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1038
1039         if (c->extended_cpuid_level >= 0x80000021)
1040                 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1041
1042         init_scattered_cpuid_features(c);
1043         init_speculation_control(c);
1044
1045         /*
1046          * Clear/Set all flags overridden by options, after probe.
1047          * This needs to happen each time we re-probe, which may happen
1048          * several times during CPU initialization.
1049          */
1050         apply_forced_caps(c);
1051 }
1052
1053 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1054 {
1055         u32 eax, ebx, ecx, edx;
1056         bool vp_bits_from_cpuid = true;
1057
1058         if (!cpu_has(c, X86_FEATURE_CPUID) ||
1059             (c->extended_cpuid_level < 0x80000008))
1060                 vp_bits_from_cpuid = false;
1061
1062         if (vp_bits_from_cpuid) {
1063                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1064
1065                 c->x86_virt_bits = (eax >> 8) & 0xff;
1066                 c->x86_phys_bits = eax & 0xff;
1067         } else {
1068                 if (IS_ENABLED(CONFIG_X86_64)) {
1069                         c->x86_clflush_size = 64;
1070                         c->x86_phys_bits = 36;
1071                         c->x86_virt_bits = 48;
1072                 } else {
1073                         c->x86_clflush_size = 32;
1074                         c->x86_virt_bits = 32;
1075                         c->x86_phys_bits = 32;
1076
1077                         if (cpu_has(c, X86_FEATURE_PAE) ||
1078                             cpu_has(c, X86_FEATURE_PSE36))
1079                                 c->x86_phys_bits = 36;
1080                 }
1081         }
1082         c->x86_cache_bits = c->x86_phys_bits;
1083         c->x86_cache_alignment = c->x86_clflush_size;
1084 }
1085
1086 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1087 {
1088 #ifdef CONFIG_X86_32
1089         int i;
1090
1091         /*
1092          * First of all, decide if this is a 486 or higher
1093          * It's a 486 if we can modify the AC flag
1094          */
1095         if (flag_is_changeable_p(X86_EFLAGS_AC))
1096                 c->x86 = 4;
1097         else
1098                 c->x86 = 3;
1099
1100         for (i = 0; i < X86_VENDOR_NUM; i++)
1101                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1102                         c->x86_vendor_id[0] = 0;
1103                         cpu_devs[i]->c_identify(c);
1104                         if (c->x86_vendor_id[0]) {
1105                                 get_cpu_vendor(c);
1106                                 break;
1107                         }
1108                 }
1109 #endif
1110 }
1111
1112 #define NO_SPECULATION          BIT(0)
1113 #define NO_MELTDOWN             BIT(1)
1114 #define NO_SSB                  BIT(2)
1115 #define NO_L1TF                 BIT(3)
1116 #define NO_MDS                  BIT(4)
1117 #define MSBDS_ONLY              BIT(5)
1118 #define NO_SWAPGS               BIT(6)
1119 #define NO_ITLB_MULTIHIT        BIT(7)
1120 #define NO_SPECTRE_V2           BIT(8)
1121 #define NO_MMIO                 BIT(9)
1122 #define NO_EIBRS_PBRSB          BIT(10)
1123 #define NO_BHI                  BIT(11)
1124
1125 #define VULNWL(vendor, family, model, whitelist)        \
1126         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1127
1128 #define VULNWL_INTEL(model, whitelist)          \
1129         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1130
1131 #define VULNWL_AMD(family, whitelist)           \
1132         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1133
1134 #define VULNWL_HYGON(family, whitelist)         \
1135         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1136
1137 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1138         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1139         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1140         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1141         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1142         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1143         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1144
1145         /* Intel Family 6 */
1146         VULNWL_INTEL(TIGERLAKE,                 NO_MMIO),
1147         VULNWL_INTEL(TIGERLAKE_L,               NO_MMIO),
1148         VULNWL_INTEL(ALDERLAKE,                 NO_MMIO),
1149         VULNWL_INTEL(ALDERLAKE_L,               NO_MMIO),
1150
1151         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1152         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1153         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1154         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1155         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1156
1157         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1158         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1159         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163
1164         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1165
1166         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1167         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1168
1169         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1170         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1171         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1172
1173         /*
1174          * Technically, swapgs isn't serializing on AMD (despite it previously
1175          * being documented as such in the APM).  But according to AMD, %gs is
1176          * updated non-speculatively, and the issuing of %gs-relative memory
1177          * operands will be blocked until the %gs update completes, which is
1178          * good enough for our purposes.
1179          */
1180
1181         VULNWL_INTEL(ATOM_TREMONT,              NO_EIBRS_PBRSB),
1182         VULNWL_INTEL(ATOM_TREMONT_L,            NO_EIBRS_PBRSB),
1183         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1184
1185         /* AMD Family 0xf - 0x12 */
1186         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1187         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1188         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190
1191         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1192         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1193         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1194
1195         /* Zhaoxin Family 7 */
1196         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1197         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1198         {}
1199 };
1200
1201 #define VULNBL(vendor, family, model, blacklist)        \
1202         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1203
1204 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1205         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1206                                             INTEL_FAM6_##model, steppings, \
1207                                             X86_FEATURE_ANY, issues)
1208
1209 #define VULNBL_AMD(family, blacklist)           \
1210         VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1211
1212 #define VULNBL_HYGON(family, blacklist)         \
1213         VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1214
1215 #define SRBDS           BIT(0)
1216 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1217 #define MMIO            BIT(1)
1218 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1219 #define MMIO_SBDS       BIT(2)
1220 /* CPU is affected by RETbleed, speculating where you would not expect it */
1221 #define RETBLEED        BIT(3)
1222 /* CPU is affected by SMT (cross-thread) return predictions */
1223 #define SMT_RSB         BIT(4)
1224 /* CPU is affected by SRSO */
1225 #define SRSO            BIT(5)
1226 /* CPU is affected by GDS */
1227 #define GDS             BIT(6)
1228 /* CPU is affected by Register File Data Sampling */
1229 #define RFDS            BIT(7)
1230
1231 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1232         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1233         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1234         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1235         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1236         VULNBL_INTEL_STEPPINGS(HASWELL_X,       X86_STEPPING_ANY,               MMIO),
1237         VULNBL_INTEL_STEPPINGS(BROADWELL_D,     X86_STEPPING_ANY,               MMIO),
1238         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1239         VULNBL_INTEL_STEPPINGS(BROADWELL_X,     X86_STEPPING_ANY,               MMIO),
1240         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1241         VULNBL_INTEL_STEPPINGS(SKYLAKE_X,       X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1242         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1243         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1244         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1245         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPING_ANY,               MMIO | RETBLEED | GDS | SRBDS),
1246         VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,    X86_STEPPING_ANY,               RETBLEED),
1247         VULNBL_INTEL_STEPPINGS(ICELAKE_L,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1248         VULNBL_INTEL_STEPPINGS(ICELAKE_D,       X86_STEPPING_ANY,               MMIO | GDS),
1249         VULNBL_INTEL_STEPPINGS(ICELAKE_X,       X86_STEPPING_ANY,               MMIO | GDS),
1250         VULNBL_INTEL_STEPPINGS(COMETLAKE,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1251         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPINGS(0x0, 0x0),        MMIO | RETBLEED),
1252         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1253         VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,     X86_STEPPING_ANY,               GDS),
1254         VULNBL_INTEL_STEPPINGS(TIGERLAKE,       X86_STEPPING_ANY,               GDS),
1255         VULNBL_INTEL_STEPPINGS(LAKEFIELD,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1256         VULNBL_INTEL_STEPPINGS(ROCKETLAKE,      X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1257         VULNBL_INTEL_STEPPINGS(ALDERLAKE,       X86_STEPPING_ANY,               RFDS),
1258         VULNBL_INTEL_STEPPINGS(ALDERLAKE_L,     X86_STEPPING_ANY,               RFDS),
1259         VULNBL_INTEL_STEPPINGS(RAPTORLAKE,      X86_STEPPING_ANY,               RFDS),
1260         VULNBL_INTEL_STEPPINGS(RAPTORLAKE_P,    X86_STEPPING_ANY,               RFDS),
1261         VULNBL_INTEL_STEPPINGS(RAPTORLAKE_S,    X86_STEPPING_ANY,               RFDS),
1262         VULNBL_INTEL_STEPPINGS(ATOM_GRACEMONT,  X86_STEPPING_ANY,               RFDS),
1263         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,    X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RFDS),
1264         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,  X86_STEPPING_ANY,               MMIO | RFDS),
1265         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,  X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RFDS),
1266         VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT,   X86_STEPPING_ANY,               RFDS),
1267         VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT_D, X86_STEPPING_ANY,               RFDS),
1268         VULNBL_INTEL_STEPPINGS(ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY,            RFDS),
1269
1270         VULNBL_AMD(0x15, RETBLEED),
1271         VULNBL_AMD(0x16, RETBLEED),
1272         VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1273         VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1274         VULNBL_AMD(0x19, SRSO),
1275         {}
1276 };
1277
1278 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1279 {
1280         const struct x86_cpu_id *m = x86_match_cpu(table);
1281
1282         return m && !!(m->driver_data & which);
1283 }
1284
1285 u64 x86_read_arch_cap_msr(void)
1286 {
1287         u64 x86_arch_cap_msr = 0;
1288
1289         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1290                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1291
1292         return x86_arch_cap_msr;
1293 }
1294
1295 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1296 {
1297         return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1298                 x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1299                 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1300 }
1301
1302 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1303 {
1304         /* The "immunity" bit trumps everything else: */
1305         if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1306                 return false;
1307
1308         /*
1309          * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1310          * indicate that mitigation is needed because guest is running on a
1311          * vulnerable hardware or may migrate to such hardware:
1312          */
1313         if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1314                 return true;
1315
1316         /* Only consult the blacklist when there is no enumeration: */
1317         return cpu_matches(cpu_vuln_blacklist, RFDS);
1318 }
1319
1320 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1321 {
1322         u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1323
1324         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1325         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1326             !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1327                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1328
1329         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1330                 return;
1331
1332         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1333
1334         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1335                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1336
1337         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1338             !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1339            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1340                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1341
1342         /*
1343          * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1344          * flag and protect from vendor-specific bugs via the whitelist.
1345          *
1346          * Don't use AutoIBRS when SNP is enabled because it degrades host
1347          * userspace indirect branch performance.
1348          */
1349         if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1350             (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1351              !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1352                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1353                 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1354                     !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1355                         setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1356         }
1357
1358         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1359             !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1360                 setup_force_cpu_bug(X86_BUG_MDS);
1361                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1362                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1363         }
1364
1365         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1366                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1367
1368         /*
1369          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1370          *      - TSX is supported or
1371          *      - TSX_CTRL is present
1372          *
1373          * TSX_CTRL check is needed for cases when TSX could be disabled before
1374          * the kernel boot e.g. kexec.
1375          * TSX_CTRL check alone is not sufficient for cases when the microcode
1376          * update is not present or running as guest that don't get TSX_CTRL.
1377          */
1378         if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1379             (cpu_has(c, X86_FEATURE_RTM) ||
1380              (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1381                 setup_force_cpu_bug(X86_BUG_TAA);
1382
1383         /*
1384          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1385          * in the vulnerability blacklist.
1386          *
1387          * Some of the implications and mitigation of Shared Buffers Data
1388          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1389          * SRBDS.
1390          */
1391         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1392              cpu_has(c, X86_FEATURE_RDSEED)) &&
1393             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1394                     setup_force_cpu_bug(X86_BUG_SRBDS);
1395
1396         /*
1397          * Processor MMIO Stale Data bug enumeration
1398          *
1399          * Affected CPU list is generally enough to enumerate the vulnerability,
1400          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1401          * not want the guest to enumerate the bug.
1402          *
1403          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1404          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1405          */
1406         if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1407                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1408                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1409                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1410                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1411         }
1412
1413         if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1414                 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1415                         setup_force_cpu_bug(X86_BUG_RETBLEED);
1416         }
1417
1418         if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1419                 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1420
1421         if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1422                 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1423                         setup_force_cpu_bug(X86_BUG_SRSO);
1424         }
1425
1426         /*
1427          * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1428          * an affected processor, the VMM may have disabled the use of GATHER by
1429          * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1430          * which means that AVX will be disabled.
1431          */
1432         if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1433             boot_cpu_has(X86_FEATURE_AVX))
1434                 setup_force_cpu_bug(X86_BUG_GDS);
1435
1436         if (vulnerable_to_rfds(x86_arch_cap_msr))
1437                 setup_force_cpu_bug(X86_BUG_RFDS);
1438
1439         /* When virtualized, eIBRS could be hidden, assume vulnerable */
1440         if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
1441             !cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1442             (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1443              boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1444                 setup_force_cpu_bug(X86_BUG_BHI);
1445
1446         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1447                 return;
1448
1449         /* Rogue Data Cache Load? No! */
1450         if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1451                 return;
1452
1453         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1454
1455         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1456                 return;
1457
1458         setup_force_cpu_bug(X86_BUG_L1TF);
1459 }
1460
1461 /*
1462  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1463  * unfortunately, that's not true in practice because of early VIA
1464  * chips and (more importantly) broken virtualizers that are not easy
1465  * to detect. In the latter case it doesn't even *fail* reliably, so
1466  * probing for it doesn't even work. Disable it completely on 32-bit
1467  * unless we can find a reliable way to detect all the broken cases.
1468  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1469  */
1470 static void detect_nopl(void)
1471 {
1472 #ifdef CONFIG_X86_32
1473         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1474 #else
1475         setup_force_cpu_cap(X86_FEATURE_NOPL);
1476 #endif
1477 }
1478
1479 /*
1480  * We parse cpu parameters early because fpu__init_system() is executed
1481  * before parse_early_param().
1482  */
1483 static void __init cpu_parse_early_param(void)
1484 {
1485         char arg[128];
1486         char *argptr = arg, *opt;
1487         int arglen, taint = 0;
1488
1489 #ifdef CONFIG_X86_32
1490         if (cmdline_find_option_bool(boot_command_line, "no387"))
1491 #ifdef CONFIG_MATH_EMULATION
1492                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1493 #else
1494                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1495 #endif
1496
1497         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1498                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1499 #endif
1500
1501         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1502                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1503
1504         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1505                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1506
1507         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1508                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1509
1510         if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1511                 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1512
1513         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1514         if (arglen <= 0)
1515                 return;
1516
1517         pr_info("Clearing CPUID bits:");
1518
1519         while (argptr) {
1520                 bool found __maybe_unused = false;
1521                 unsigned int bit;
1522
1523                 opt = strsep(&argptr, ",");
1524
1525                 /*
1526                  * Handle naked numbers first for feature flags which don't
1527                  * have names.
1528                  */
1529                 if (!kstrtouint(opt, 10, &bit)) {
1530                         if (bit < NCAPINTS * 32) {
1531
1532                                 /* empty-string, i.e., ""-defined feature flags */
1533                                 if (!x86_cap_flags[bit])
1534                                         pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1535                                 else
1536                                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1537
1538                                 setup_clear_cpu_cap(bit);
1539                                 taint++;
1540                         }
1541                         /*
1542                          * The assumption is that there are no feature names with only
1543                          * numbers in the name thus go to the next argument.
1544                          */
1545                         continue;
1546                 }
1547
1548                 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1549                         if (!x86_cap_flag(bit))
1550                                 continue;
1551
1552                         if (strcmp(x86_cap_flag(bit), opt))
1553                                 continue;
1554
1555                         pr_cont(" %s", opt);
1556                         setup_clear_cpu_cap(bit);
1557                         taint++;
1558                         found = true;
1559                         break;
1560                 }
1561
1562                 if (!found)
1563                         pr_cont(" (unknown: %s)", opt);
1564         }
1565         pr_cont("\n");
1566
1567         if (taint)
1568                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1569 }
1570
1571 /*
1572  * Do minimum CPU detection early.
1573  * Fields really needed: vendor, cpuid_level, family, model, mask,
1574  * cache alignment.
1575  * The others are not touched to avoid unwanted side effects.
1576  *
1577  * WARNING: this function is only called on the boot CPU.  Don't add code
1578  * here that is supposed to run on all CPUs.
1579  */
1580 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1581 {
1582         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1583         c->extended_cpuid_level = 0;
1584
1585         if (!have_cpuid_p())
1586                 identify_cpu_without_cpuid(c);
1587
1588         /* cyrix could have cpuid enabled via c_identify()*/
1589         if (have_cpuid_p()) {
1590                 cpu_detect(c);
1591                 get_cpu_vendor(c);
1592                 get_cpu_cap(c);
1593                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1594                 get_cpu_address_sizes(c);
1595                 cpu_parse_early_param();
1596
1597                 cpu_init_topology(c);
1598
1599                 if (this_cpu->c_early_init)
1600                         this_cpu->c_early_init(c);
1601
1602                 c->cpu_index = 0;
1603                 filter_cpuid_features(c, false);
1604
1605                 if (this_cpu->c_bsp_init)
1606                         this_cpu->c_bsp_init(c);
1607         } else {
1608                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1609                 get_cpu_address_sizes(c);
1610                 cpu_init_topology(c);
1611         }
1612
1613         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1614
1615         cpu_set_bug_bits(c);
1616
1617         sld_setup(c);
1618
1619 #ifdef CONFIG_X86_32
1620         /*
1621          * Regardless of whether PCID is enumerated, the SDM says
1622          * that it can't be enabled in 32-bit mode.
1623          */
1624         setup_clear_cpu_cap(X86_FEATURE_PCID);
1625 #endif
1626
1627         /*
1628          * Later in the boot process pgtable_l5_enabled() relies on
1629          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1630          * enabled by this point we need to clear the feature bit to avoid
1631          * false-positives at the later stage.
1632          *
1633          * pgtable_l5_enabled() can be false here for several reasons:
1634          *  - 5-level paging is disabled compile-time;
1635          *  - it's 32-bit kernel;
1636          *  - machine doesn't support 5-level paging;
1637          *  - user specified 'no5lvl' in kernel command line.
1638          */
1639         if (!pgtable_l5_enabled())
1640                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1641
1642         detect_nopl();
1643 }
1644
1645 void __init early_cpu_init(void)
1646 {
1647         const struct cpu_dev *const *cdev;
1648         int count = 0;
1649
1650 #ifdef CONFIG_PROCESSOR_SELECT
1651         pr_info("KERNEL supported cpus:\n");
1652 #endif
1653
1654         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1655                 const struct cpu_dev *cpudev = *cdev;
1656
1657                 if (count >= X86_VENDOR_NUM)
1658                         break;
1659                 cpu_devs[count] = cpudev;
1660                 count++;
1661
1662 #ifdef CONFIG_PROCESSOR_SELECT
1663                 {
1664                         unsigned int j;
1665
1666                         for (j = 0; j < 2; j++) {
1667                                 if (!cpudev->c_ident[j])
1668                                         continue;
1669                                 pr_info("  %s %s\n", cpudev->c_vendor,
1670                                         cpudev->c_ident[j]);
1671                         }
1672                 }
1673 #endif
1674         }
1675         early_identify_cpu(&boot_cpu_data);
1676 }
1677
1678 static bool detect_null_seg_behavior(void)
1679 {
1680         /*
1681          * Empirically, writing zero to a segment selector on AMD does
1682          * not clear the base, whereas writing zero to a segment
1683          * selector on Intel does clear the base.  Intel's behavior
1684          * allows slightly faster context switches in the common case
1685          * where GS is unused by the prev and next threads.
1686          *
1687          * Since neither vendor documents this anywhere that I can see,
1688          * detect it directly instead of hard-coding the choice by
1689          * vendor.
1690          *
1691          * I've designated AMD's behavior as the "bug" because it's
1692          * counterintuitive and less friendly.
1693          */
1694
1695         unsigned long old_base, tmp;
1696         rdmsrl(MSR_FS_BASE, old_base);
1697         wrmsrl(MSR_FS_BASE, 1);
1698         loadsegment(fs, 0);
1699         rdmsrl(MSR_FS_BASE, tmp);
1700         wrmsrl(MSR_FS_BASE, old_base);
1701         return tmp == 0;
1702 }
1703
1704 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1705 {
1706         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1707         if (!IS_ENABLED(CONFIG_X86_64))
1708                 return;
1709
1710         if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1711                 return;
1712
1713         /*
1714          * CPUID bit above wasn't set. If this kernel is still running
1715          * as a HV guest, then the HV has decided not to advertize
1716          * that CPUID bit for whatever reason.  For example, one
1717          * member of the migration pool might be vulnerable.  Which
1718          * means, the bug is present: set the BUG flag and return.
1719          */
1720         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1721                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1722                 return;
1723         }
1724
1725         /*
1726          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1727          * 0x18 is the respective family for Hygon.
1728          */
1729         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1730             detect_null_seg_behavior())
1731                 return;
1732
1733         /* All the remaining ones are affected */
1734         set_cpu_bug(c, X86_BUG_NULL_SEG);
1735 }
1736
1737 static void generic_identify(struct cpuinfo_x86 *c)
1738 {
1739         c->extended_cpuid_level = 0;
1740
1741         if (!have_cpuid_p())
1742                 identify_cpu_without_cpuid(c);
1743
1744         /* cyrix could have cpuid enabled via c_identify()*/
1745         if (!have_cpuid_p())
1746                 return;
1747
1748         cpu_detect(c);
1749
1750         get_cpu_vendor(c);
1751
1752         get_cpu_cap(c);
1753
1754         get_cpu_address_sizes(c);
1755
1756         get_model_name(c); /* Default name */
1757
1758         /*
1759          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1760          * systems that run Linux at CPL > 0 may or may not have the
1761          * issue, but, even if they have the issue, there's absolutely
1762          * nothing we can do about it because we can't use the real IRET
1763          * instruction.
1764          *
1765          * NB: For the time being, only 32-bit kernels support
1766          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1767          * whether to apply espfix using paravirt hooks.  If any
1768          * non-paravirt system ever shows up that does *not* have the
1769          * ESPFIX issue, we can change this.
1770          */
1771 #ifdef CONFIG_X86_32
1772         set_cpu_bug(c, X86_BUG_ESPFIX);
1773 #endif
1774 }
1775
1776 /*
1777  * This does the hard work of actually picking apart the CPU stuff...
1778  */
1779 static void identify_cpu(struct cpuinfo_x86 *c)
1780 {
1781         int i;
1782
1783         c->loops_per_jiffy = loops_per_jiffy;
1784         c->x86_cache_size = 0;
1785         c->x86_vendor = X86_VENDOR_UNKNOWN;
1786         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1787         c->x86_vendor_id[0] = '\0'; /* Unset */
1788         c->x86_model_id[0] = '\0';  /* Unset */
1789 #ifdef CONFIG_X86_64
1790         c->x86_clflush_size = 64;
1791         c->x86_phys_bits = 36;
1792         c->x86_virt_bits = 48;
1793 #else
1794         c->cpuid_level = -1;    /* CPUID not detected */
1795         c->x86_clflush_size = 32;
1796         c->x86_phys_bits = 32;
1797         c->x86_virt_bits = 32;
1798 #endif
1799         c->x86_cache_alignment = c->x86_clflush_size;
1800         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1801 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1802         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1803 #endif
1804
1805         generic_identify(c);
1806
1807         cpu_parse_topology(c);
1808
1809         if (this_cpu->c_identify)
1810                 this_cpu->c_identify(c);
1811
1812         /* Clear/Set all flags overridden by options, after probe */
1813         apply_forced_caps(c);
1814
1815         /*
1816          * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1817          * Hygon will clear it in ->c_init() below.
1818          */
1819         set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1820
1821         /*
1822          * Vendor-specific initialization.  In this section we
1823          * canonicalize the feature flags, meaning if there are
1824          * features a certain CPU supports which CPUID doesn't
1825          * tell us, CPUID claiming incorrect flags, or other bugs,
1826          * we handle them here.
1827          *
1828          * At the end of this section, c->x86_capability better
1829          * indicate the features this CPU genuinely supports!
1830          */
1831         if (this_cpu->c_init)
1832                 this_cpu->c_init(c);
1833
1834         /* Disable the PN if appropriate */
1835         squash_the_stupid_serial_number(c);
1836
1837         /* Set up SMEP/SMAP/UMIP */
1838         setup_smep(c);
1839         setup_smap(c);
1840         setup_umip(c);
1841
1842         /* Enable FSGSBASE instructions if available. */
1843         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1844                 cr4_set_bits(X86_CR4_FSGSBASE);
1845                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1846         }
1847
1848         /*
1849          * The vendor-specific functions might have changed features.
1850          * Now we do "generic changes."
1851          */
1852
1853         /* Filter out anything that depends on CPUID levels we don't have */
1854         filter_cpuid_features(c, true);
1855
1856         /* If the model name is still unset, do table lookup. */
1857         if (!c->x86_model_id[0]) {
1858                 const char *p;
1859                 p = table_lookup_model(c);
1860                 if (p)
1861                         strcpy(c->x86_model_id, p);
1862                 else
1863                         /* Last resort... */
1864                         sprintf(c->x86_model_id, "%02x/%02x",
1865                                 c->x86, c->x86_model);
1866         }
1867
1868         x86_init_rdrand(c);
1869         setup_pku(c);
1870         setup_cet(c);
1871
1872         /*
1873          * Clear/Set all flags overridden by options, need do it
1874          * before following smp all cpus cap AND.
1875          */
1876         apply_forced_caps(c);
1877
1878         /*
1879          * On SMP, boot_cpu_data holds the common feature set between
1880          * all CPUs; so make sure that we indicate which features are
1881          * common between the CPUs.  The first time this routine gets
1882          * executed, c == &boot_cpu_data.
1883          */
1884         if (c != &boot_cpu_data) {
1885                 /* AND the already accumulated flags with these */
1886                 for (i = 0; i < NCAPINTS; i++)
1887                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1888
1889                 /* OR, i.e. replicate the bug flags */
1890                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1891                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1892         }
1893
1894         ppin_init(c);
1895
1896         /* Init Machine Check Exception if available. */
1897         mcheck_cpu_init(c);
1898
1899 #ifdef CONFIG_NUMA
1900         numa_add_cpu(smp_processor_id());
1901 #endif
1902 }
1903
1904 /*
1905  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1906  * on 32-bit kernels:
1907  */
1908 #ifdef CONFIG_X86_32
1909 void enable_sep_cpu(void)
1910 {
1911         struct tss_struct *tss;
1912         int cpu;
1913
1914         if (!boot_cpu_has(X86_FEATURE_SEP))
1915                 return;
1916
1917         cpu = get_cpu();
1918         tss = &per_cpu(cpu_tss_rw, cpu);
1919
1920         /*
1921          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1922          * see the big comment in struct x86_hw_tss's definition.
1923          */
1924
1925         tss->x86_tss.ss1 = __KERNEL_CS;
1926         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1927         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1928         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1929
1930         put_cpu();
1931 }
1932 #endif
1933
1934 static __init void identify_boot_cpu(void)
1935 {
1936         identify_cpu(&boot_cpu_data);
1937         if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1938                 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1939 #ifdef CONFIG_X86_32
1940         enable_sep_cpu();
1941 #endif
1942         cpu_detect_tlb(&boot_cpu_data);
1943         setup_cr_pinning();
1944
1945         tsx_init();
1946         tdx_init();
1947         lkgs_init();
1948 }
1949
1950 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1951 {
1952         BUG_ON(c == &boot_cpu_data);
1953         identify_cpu(c);
1954 #ifdef CONFIG_X86_32
1955         enable_sep_cpu();
1956 #endif
1957         x86_spec_ctrl_setup_ap();
1958         update_srbds_msr();
1959         if (boot_cpu_has_bug(X86_BUG_GDS))
1960                 update_gds_msr();
1961
1962         tsx_ap_init();
1963 }
1964
1965 void print_cpu_info(struct cpuinfo_x86 *c)
1966 {
1967         const char *vendor = NULL;
1968
1969         if (c->x86_vendor < X86_VENDOR_NUM) {
1970                 vendor = this_cpu->c_vendor;
1971         } else {
1972                 if (c->cpuid_level >= 0)
1973                         vendor = c->x86_vendor_id;
1974         }
1975
1976         if (vendor && !strstr(c->x86_model_id, vendor))
1977                 pr_cont("%s ", vendor);
1978
1979         if (c->x86_model_id[0])
1980                 pr_cont("%s", c->x86_model_id);
1981         else
1982                 pr_cont("%d86", c->x86);
1983
1984         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1985
1986         if (c->x86_stepping || c->cpuid_level >= 0)
1987                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1988         else
1989                 pr_cont(")\n");
1990 }
1991
1992 /*
1993  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1994  * function prevents it from becoming an environment variable for init.
1995  */
1996 static __init int setup_clearcpuid(char *arg)
1997 {
1998         return 1;
1999 }
2000 __setup("clearcpuid=", setup_clearcpuid);
2001
2002 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2003         .current_task   = &init_task,
2004         .preempt_count  = INIT_PREEMPT_COUNT,
2005         .top_of_stack   = TOP_OF_INIT_STACK,
2006 };
2007 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2008 EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
2009
2010 #ifdef CONFIG_X86_64
2011 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2012                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2013 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2014
2015 static void wrmsrl_cstar(unsigned long val)
2016 {
2017         /*
2018          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2019          * is so far ignored by the CPU, but raises a #VE trap in a TDX
2020          * guest. Avoid the pointless write on all Intel CPUs.
2021          */
2022         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2023                 wrmsrl(MSR_CSTAR, val);
2024 }
2025
2026 static inline void idt_syscall_init(void)
2027 {
2028         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2029
2030         if (ia32_enabled()) {
2031                 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2032                 /*
2033                  * This only works on Intel CPUs.
2034                  * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2035                  * This does not cause SYSENTER to jump to the wrong location, because
2036                  * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2037                  */
2038                 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2039                 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2040                             (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2041                 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2042         } else {
2043                 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2044                 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2045                 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2046                 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2047         }
2048
2049         /*
2050          * Flags to clear on syscall; clear as much as possible
2051          * to minimize user space-kernel interference.
2052          */
2053         wrmsrl(MSR_SYSCALL_MASK,
2054                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2055                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2056                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2057                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2058                X86_EFLAGS_AC|X86_EFLAGS_ID);
2059 }
2060
2061 /* May not be marked __init: used by software suspend */
2062 void syscall_init(void)
2063 {
2064         /* The default user and kernel segments */
2065         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2066
2067         /*
2068          * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2069          * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2070          * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2071          * instruction to return to ring 3 (both sysexit and sysret cause
2072          * #UD when FRED is enabled).
2073          */
2074         if (!cpu_feature_enabled(X86_FEATURE_FRED))
2075                 idt_syscall_init();
2076 }
2077
2078 #else   /* CONFIG_X86_64 */
2079
2080 #ifdef CONFIG_STACKPROTECTOR
2081 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2082 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2083 #endif
2084
2085 #endif  /* CONFIG_X86_64 */
2086
2087 /*
2088  * Clear all 6 debug registers:
2089  */
2090 static void clear_all_debug_regs(void)
2091 {
2092         int i;
2093
2094         for (i = 0; i < 8; i++) {
2095                 /* Ignore db4, db5 */
2096                 if ((i == 4) || (i == 5))
2097                         continue;
2098
2099                 set_debugreg(0, i);
2100         }
2101 }
2102
2103 #ifdef CONFIG_KGDB
2104 /*
2105  * Restore debug regs if using kgdbwait and you have a kernel debugger
2106  * connection established.
2107  */
2108 static void dbg_restore_debug_regs(void)
2109 {
2110         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2111                 arch_kgdb_ops.correct_hw_break();
2112 }
2113 #else /* ! CONFIG_KGDB */
2114 #define dbg_restore_debug_regs()
2115 #endif /* ! CONFIG_KGDB */
2116
2117 static inline void setup_getcpu(int cpu)
2118 {
2119         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2120         struct desc_struct d = { };
2121
2122         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2123                 wrmsr(MSR_TSC_AUX, cpudata, 0);
2124
2125         /* Store CPU and node number in limit. */
2126         d.limit0 = cpudata;
2127         d.limit1 = cpudata >> 16;
2128
2129         d.type = 5;             /* RO data, expand down, accessed */
2130         d.dpl = 3;              /* Visible to user code */
2131         d.s = 1;                /* Not a system segment */
2132         d.p = 1;                /* Present */
2133         d.d = 1;                /* 32-bit */
2134
2135         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2136 }
2137
2138 #ifdef CONFIG_X86_64
2139 static inline void tss_setup_ist(struct tss_struct *tss)
2140 {
2141         /* Set up the per-CPU TSS IST stacks */
2142         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2143         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2144         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2145         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2146         /* Only mapped when SEV-ES is active */
2147         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2148 }
2149 #else /* CONFIG_X86_64 */
2150 static inline void tss_setup_ist(struct tss_struct *tss) { }
2151 #endif /* !CONFIG_X86_64 */
2152
2153 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2154 {
2155         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2156
2157 #ifdef CONFIG_X86_IOPL_IOPERM
2158         tss->io_bitmap.prev_max = 0;
2159         tss->io_bitmap.prev_sequence = 0;
2160         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2161         /*
2162          * Invalidate the extra array entry past the end of the all
2163          * permission bitmap as required by the hardware.
2164          */
2165         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2166 #endif
2167 }
2168
2169 /*
2170  * Setup everything needed to handle exceptions from the IDT, including the IST
2171  * exceptions which use paranoid_entry().
2172  */
2173 void cpu_init_exception_handling(void)
2174 {
2175         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2176         int cpu = raw_smp_processor_id();
2177
2178         /* paranoid_entry() gets the CPU number from the GDT */
2179         setup_getcpu(cpu);
2180
2181         /* For IDT mode, IST vectors need to be set in TSS. */
2182         if (!cpu_feature_enabled(X86_FEATURE_FRED))
2183                 tss_setup_ist(tss);
2184         tss_setup_io_bitmap(tss);
2185         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2186
2187         load_TR_desc();
2188
2189         /* GHCB needs to be setup to handle #VC. */
2190         setup_ghcb();
2191
2192         if (cpu_feature_enabled(X86_FEATURE_FRED))
2193                 cpu_init_fred_exceptions();
2194         else
2195                 load_current_idt();
2196 }
2197
2198 /*
2199  * cpu_init() initializes state that is per-CPU. Some data is already
2200  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2201  * reload it nevertheless, this function acts as a 'CPU state barrier',
2202  * nothing should get across.
2203  */
2204 void cpu_init(void)
2205 {
2206         struct task_struct *cur = current;
2207         int cpu = raw_smp_processor_id();
2208
2209 #ifdef CONFIG_NUMA
2210         if (this_cpu_read(numa_node) == 0 &&
2211             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2212                 set_numa_node(early_cpu_to_node(cpu));
2213 #endif
2214         pr_debug("Initializing CPU#%d\n", cpu);
2215
2216         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2217             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2218                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2219
2220         if (IS_ENABLED(CONFIG_X86_64)) {
2221                 loadsegment(fs, 0);
2222                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2223                 syscall_init();
2224
2225                 wrmsrl(MSR_FS_BASE, 0);
2226                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2227                 barrier();
2228
2229                 x2apic_setup();
2230         }
2231
2232         mmgrab(&init_mm);
2233         cur->active_mm = &init_mm;
2234         BUG_ON(cur->mm);
2235         initialize_tlbstate_and_flush();
2236         enter_lazy_tlb(&init_mm, cur);
2237
2238         /*
2239          * sp0 points to the entry trampoline stack regardless of what task
2240          * is running.
2241          */
2242         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2243
2244         load_mm_ldt(&init_mm);
2245
2246         clear_all_debug_regs();
2247         dbg_restore_debug_regs();
2248
2249         doublefault_init_cpu_tss();
2250
2251         if (is_uv_system())
2252                 uv_cpu_init();
2253
2254         load_fixmap_gdt(cpu);
2255 }
2256
2257 #ifdef CONFIG_MICROCODE_LATE_LOADING
2258 /**
2259  * store_cpu_caps() - Store a snapshot of CPU capabilities
2260  * @curr_info: Pointer where to store it
2261  *
2262  * Returns: None
2263  */
2264 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2265 {
2266         /* Reload CPUID max function as it might've changed. */
2267         curr_info->cpuid_level = cpuid_eax(0);
2268
2269         /* Copy all capability leafs and pick up the synthetic ones. */
2270         memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2271                sizeof(curr_info->x86_capability));
2272
2273         /* Get the hardware CPUID leafs */
2274         get_cpu_cap(curr_info);
2275 }
2276
2277 /**
2278  * microcode_check() - Check if any CPU capabilities changed after an update.
2279  * @prev_info:  CPU capabilities stored before an update.
2280  *
2281  * The microcode loader calls this upon late microcode load to recheck features,
2282  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2283  *
2284  * Return: None
2285  */
2286 void microcode_check(struct cpuinfo_x86 *prev_info)
2287 {
2288         struct cpuinfo_x86 curr_info;
2289
2290         perf_check_microcode();
2291
2292         amd_check_microcode();
2293
2294         store_cpu_caps(&curr_info);
2295
2296         if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2297                     sizeof(prev_info->x86_capability)))
2298                 return;
2299
2300         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2301         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2302 }
2303 #endif
2304
2305 /*
2306  * Invoked from core CPU hotplug code after hotplug operations
2307  */
2308 void arch_smt_update(void)
2309 {
2310         /* Handle the speculative execution misfeatures */
2311         cpu_bugs_smt_update();
2312         /* Check whether IPI broadcasting can be enabled */
2313         apic_smt_update();
2314 }
2315
2316 void __init arch_cpu_finalize_init(void)
2317 {
2318         struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2319
2320         identify_boot_cpu();
2321
2322         select_idle_routine();
2323
2324         /*
2325          * identify_boot_cpu() initialized SMT support information, let the
2326          * core code know.
2327          */
2328         cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2329
2330         if (!IS_ENABLED(CONFIG_SMP)) {
2331                 pr_info("CPU: ");
2332                 print_cpu_info(&boot_cpu_data);
2333         }
2334
2335         cpu_select_mitigations();
2336
2337         arch_smt_update();
2338
2339         if (IS_ENABLED(CONFIG_X86_32)) {
2340                 /*
2341                  * Check whether this is a real i386 which is not longer
2342                  * supported and fixup the utsname.
2343                  */
2344                 if (boot_cpu_data.x86 < 4)
2345                         panic("Kernel requires i486+ for 'invlpg' and other features");
2346
2347                 init_utsname()->machine[1] =
2348                         '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2349         }
2350
2351         /*
2352          * Must be before alternatives because it might set or clear
2353          * feature bits.
2354          */
2355         fpu__init_system();
2356         fpu__init_cpu();
2357
2358         /*
2359          * Ensure that access to the per CPU representation has the initial
2360          * boot CPU configuration.
2361          */
2362         *c = boot_cpu_data;
2363         c->initialized = true;
2364
2365         alternative_instructions();
2366
2367         if (IS_ENABLED(CONFIG_X86_64)) {
2368                 /*
2369                  * Make sure the first 2MB area is not mapped by huge pages
2370                  * There are typically fixed size MTRRs in there and overlapping
2371                  * MTRRs into large pages causes slow downs.
2372                  *
2373                  * Right now we don't do that with gbpages because there seems
2374                  * very little benefit for that case.
2375                  */
2376                 if (!direct_gbpages)
2377                         set_memory_4k((unsigned long)__va(0), 1);
2378         } else {
2379                 fpu__init_check_bugs();
2380         }
2381
2382         /*
2383          * This needs to be called before any devices perform DMA
2384          * operations that might use the SWIOTLB bounce buffers. It will
2385          * mark the bounce buffers as decrypted so that their usage will
2386          * not cause "plain-text" data to be decrypted when accessed. It
2387          * must be called after late_time_init() so that Hyper-V x86/x64
2388          * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2389          */
2390         mem_encrypt_init();
2391 }