Merge tag 'driver-core-6.9-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / entry / entry_64.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  linux/arch/x86_64/entry.S
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8  *
9  * entry.S contains the system-call and fault low-level handling routines.
10  *
11  * Some of this is documented in Documentation/arch/x86/entry_64.rst
12  *
13  * A note on terminology:
14  * - iret frame:        Architecture defined interrupt frame from SS to RIP
15  *                      at the top of the kernel process stack.
16  *
17  * Some macro usage:
18  * - SYM_FUNC_START/END:Define functions in the symbol table.
19  * - idtentry:          Define exception entry points.
20  */
21 #include <linux/export.h>
22 #include <linux/linkage.h>
23 #include <asm/segment.h>
24 #include <asm/cache.h>
25 #include <asm/errno.h>
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/frame.h>
39 #include <asm/trapnr.h>
40 #include <asm/nospec-branch.h>
41 #include <asm/fsgsbase.h>
42 #include <linux/err.h>
43
44 #include "calling.h"
45
46 .code64
47 .section .entry.text, "ax"
48
49 /*
50  * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51  *
52  * This is the only entry point used for 64-bit system calls.  The
53  * hardware interface is reasonably well designed and the register to
54  * argument mapping Linux uses fits well with the registers that are
55  * available when SYSCALL is used.
56  *
57  * SYSCALL instructions can be found inlined in libc implementations as
58  * well as some other programs and libraries.  There are also a handful
59  * of SYSCALL instructions in the vDSO used, for example, as a
60  * clock_gettimeofday fallback.
61  *
62  * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63  * then loads new ss, cs, and rip from previously programmed MSRs.
64  * rflags gets masked by a value from another MSR (so CLD and CLAC
65  * are not needed). SYSCALL does not save anything on the stack
66  * and does not change rsp.
67  *
68  * Registers on entry:
69  * rax  system call number
70  * rcx  return address
71  * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72  * rdi  arg0
73  * rsi  arg1
74  * rdx  arg2
75  * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76  * r8   arg4
77  * r9   arg5
78  * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79  *
80  * Only called from user space.
81  *
82  * When user can change pt_regs->foo always force IRET. That is because
83  * it deals with uncanonical addresses better. SYSRET has trouble
84  * with them due to bugs in both AMD and Intel CPUs.
85  */
86
87 SYM_CODE_START(entry_SYSCALL_64)
88         UNWIND_HINT_ENTRY
89         ENDBR
90
91         swapgs
92         /* tss.sp2 is scratch space. */
93         movq    %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94         SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95         movq    PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
96
97 SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98         ANNOTATE_NOENDBR
99
100         /* Construct struct pt_regs on stack */
101         pushq   $__USER_DS                              /* pt_regs->ss */
102         pushq   PER_CPU_VAR(cpu_tss_rw + TSS_sp2)       /* pt_regs->sp */
103         pushq   %r11                                    /* pt_regs->flags */
104         pushq   $__USER_CS                              /* pt_regs->cs */
105         pushq   %rcx                                    /* pt_regs->ip */
106 SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107         pushq   %rax                                    /* pt_regs->orig_ax */
108
109         PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111         /* IRQs are off. */
112         movq    %rsp, %rdi
113         /* Sign extend the lower 32bit as syscall numbers are treated as int */
114         movslq  %eax, %rsi
115
116         /* clobbers %rax, make sure it is after saving the syscall nr */
117         IBRS_ENTER
118         UNTRAIN_RET
119         CLEAR_BRANCH_HISTORY
120
121         call    do_syscall_64           /* returns with IRQs disabled */
122
123         /*
124          * Try to use SYSRET instead of IRET if we're returning to
125          * a completely clean 64-bit userspace context.  If we're not,
126          * go to the slow exit path.
127          * In the Xen PV case we must use iret anyway.
128          */
129
130         ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
131                 "jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
132
133         /*
134          * We win! This label is here just for ease of understanding
135          * perf profiles. Nothing jumps here.
136          */
137 syscall_return_via_sysret:
138         IBRS_EXIT
139         POP_REGS pop_rdi=0
140
141         /*
142          * Now all regs are restored except RSP and RDI.
143          * Save old stack pointer and switch to trampoline stack.
144          */
145         movq    %rsp, %rdi
146         movq    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
147         UNWIND_HINT_END_OF_STACK
148
149         pushq   RSP-RDI(%rdi)   /* RSP */
150         pushq   (%rdi)          /* RDI */
151
152         /*
153          * We are on the trampoline stack.  All regs except RDI are live.
154          * We can do future final exit work right here.
155          */
156         STACKLEAK_ERASE_NOCLOBBER
157
158         SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
159
160         popq    %rdi
161         popq    %rsp
162 SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
163         ANNOTATE_NOENDBR
164         swapgs
165         CLEAR_CPU_BUFFERS
166         sysretq
167 SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
168         ANNOTATE_NOENDBR
169         int3
170 SYM_CODE_END(entry_SYSCALL_64)
171
172 /*
173  * %rdi: prev task
174  * %rsi: next task
175  */
176 .pushsection .text, "ax"
177 SYM_FUNC_START(__switch_to_asm)
178         /*
179          * Save callee-saved registers
180          * This must match the order in inactive_task_frame
181          */
182         pushq   %rbp
183         pushq   %rbx
184         pushq   %r12
185         pushq   %r13
186         pushq   %r14
187         pushq   %r15
188
189         /* switch stack */
190         movq    %rsp, TASK_threadsp(%rdi)
191         movq    TASK_threadsp(%rsi), %rsp
192
193 #ifdef CONFIG_STACKPROTECTOR
194         movq    TASK_stack_canary(%rsi), %rbx
195         movq    %rbx, PER_CPU_VAR(fixed_percpu_data + FIXED_stack_canary)
196 #endif
197
198         /*
199          * When switching from a shallower to a deeper call stack
200          * the RSB may either underflow or use entries populated
201          * with userspace addresses. On CPUs where those concerns
202          * exist, overwrite the RSB with entries which capture
203          * speculative execution to prevent attack.
204          */
205         FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
206
207         /* restore callee-saved registers */
208         popq    %r15
209         popq    %r14
210         popq    %r13
211         popq    %r12
212         popq    %rbx
213         popq    %rbp
214
215         jmp     __switch_to
216 SYM_FUNC_END(__switch_to_asm)
217 .popsection
218
219 /*
220  * A newly forked process directly context switches into this address.
221  *
222  * rax: prev task we switched from
223  * rbx: kernel thread func (NULL for user thread)
224  * r12: kernel thread arg
225  */
226 .pushsection .text, "ax"
227 SYM_CODE_START(ret_from_fork_asm)
228         /*
229          * This is the start of the kernel stack; even through there's a
230          * register set at the top, the regset isn't necessarily coherent
231          * (consider kthreads) and one cannot unwind further.
232          *
233          * This ensures stack unwinds of kernel threads terminate in a known
234          * good state.
235          */
236         UNWIND_HINT_END_OF_STACK
237         ANNOTATE_NOENDBR // copy_thread
238         CALL_DEPTH_ACCOUNT
239
240         movq    %rax, %rdi              /* prev */
241         movq    %rsp, %rsi              /* regs */
242         movq    %rbx, %rdx              /* fn */
243         movq    %r12, %rcx              /* fn_arg */
244         call    ret_from_fork
245
246         /*
247          * Set the stack state to what is expected for the target function
248          * -- at this point the register set should be a valid user set
249          * and unwind should work normally.
250          */
251         UNWIND_HINT_REGS
252
253 #ifdef CONFIG_X86_FRED
254         ALTERNATIVE "jmp swapgs_restore_regs_and_return_to_usermode", \
255                     "jmp asm_fred_exit_user", X86_FEATURE_FRED
256 #else
257         jmp     swapgs_restore_regs_and_return_to_usermode
258 #endif
259 SYM_CODE_END(ret_from_fork_asm)
260 .popsection
261
262 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
263 #ifdef CONFIG_DEBUG_ENTRY
264         pushq %rax
265         SAVE_FLAGS
266         testl $X86_EFLAGS_IF, %eax
267         jz .Lokay_\@
268         ud2
269 .Lokay_\@:
270         popq %rax
271 #endif
272 .endm
273
274 SYM_CODE_START(xen_error_entry)
275         ANNOTATE_NOENDBR
276         UNWIND_HINT_FUNC
277         PUSH_AND_CLEAR_REGS save_ret=1
278         ENCODE_FRAME_POINTER 8
279         UNTRAIN_RET_FROM_CALL
280         RET
281 SYM_CODE_END(xen_error_entry)
282
283 /**
284  * idtentry_body - Macro to emit code calling the C function
285  * @cfunc:              C function to be called
286  * @has_error_code:     Hardware pushed error code on stack
287  */
288 .macro idtentry_body cfunc has_error_code:req
289
290         /*
291          * Call error_entry() and switch to the task stack if from userspace.
292          *
293          * When in XENPV, it is already in the task stack, and it can't fault
294          * for native_iret() nor native_load_gs_index() since XENPV uses its
295          * own pvops for IRET and load_gs_index().  And it doesn't need to
296          * switch the CR3.  So it can skip invoking error_entry().
297          */
298         ALTERNATIVE "call error_entry; movq %rax, %rsp", \
299                     "call xen_error_entry", X86_FEATURE_XENPV
300
301         ENCODE_FRAME_POINTER
302         UNWIND_HINT_REGS
303
304         movq    %rsp, %rdi                      /* pt_regs pointer into 1st argument*/
305
306         .if \has_error_code == 1
307                 movq    ORIG_RAX(%rsp), %rsi    /* get error code into 2nd argument*/
308                 movq    $-1, ORIG_RAX(%rsp)     /* no syscall to restart */
309         .endif
310
311         call    \cfunc
312
313         /* For some configurations \cfunc ends up being a noreturn. */
314         REACHABLE
315
316         jmp     error_return
317 .endm
318
319 /**
320  * idtentry - Macro to generate entry stubs for simple IDT entries
321  * @vector:             Vector number
322  * @asmsym:             ASM symbol for the entry point
323  * @cfunc:              C function to be called
324  * @has_error_code:     Hardware pushed error code on stack
325  *
326  * The macro emits code to set up the kernel context for straight forward
327  * and simple IDT entries. No IST stack, no paranoid entry checks.
328  */
329 .macro idtentry vector asmsym cfunc has_error_code:req
330 SYM_CODE_START(\asmsym)
331
332         .if \vector == X86_TRAP_BP
333                 /* #BP advances %rip to the next instruction */
334                 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
335         .else
336                 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
337         .endif
338
339         ENDBR
340         ASM_CLAC
341         cld
342
343         .if \has_error_code == 0
344                 pushq   $-1                     /* ORIG_RAX: no syscall to restart */
345         .endif
346
347         .if \vector == X86_TRAP_BP
348                 /*
349                  * If coming from kernel space, create a 6-word gap to allow the
350                  * int3 handler to emulate a call instruction.
351                  */
352                 testb   $3, CS-ORIG_RAX(%rsp)
353                 jnz     .Lfrom_usermode_no_gap_\@
354                 .rept   6
355                 pushq   5*8(%rsp)
356                 .endr
357                 UNWIND_HINT_IRET_REGS offset=8
358 .Lfrom_usermode_no_gap_\@:
359         .endif
360
361         idtentry_body \cfunc \has_error_code
362
363 _ASM_NOKPROBE(\asmsym)
364 SYM_CODE_END(\asmsym)
365 .endm
366
367 /*
368  * Interrupt entry/exit.
369  *
370  + The interrupt stubs push (vector) onto the stack, which is the error_code
371  * position of idtentry exceptions, and jump to one of the two idtentry points
372  * (common/spurious).
373  *
374  * common_interrupt is a hotpath, align it to a cache line
375  */
376 .macro idtentry_irq vector cfunc
377         .p2align CONFIG_X86_L1_CACHE_SHIFT
378         idtentry \vector asm_\cfunc \cfunc has_error_code=1
379 .endm
380
381 /**
382  * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
383  * @vector:             Vector number
384  * @asmsym:             ASM symbol for the entry point
385  * @cfunc:              C function to be called
386  *
387  * The macro emits code to set up the kernel context for #MC and #DB
388  *
389  * If the entry comes from user space it uses the normal entry path
390  * including the return to user space work and preemption checks on
391  * exit.
392  *
393  * If hits in kernel mode then it needs to go through the paranoid
394  * entry as the exception can hit any random state. No preemption
395  * check on exit to keep the paranoid path simple.
396  */
397 .macro idtentry_mce_db vector asmsym cfunc
398 SYM_CODE_START(\asmsym)
399         UNWIND_HINT_IRET_ENTRY
400         ENDBR
401         ASM_CLAC
402         cld
403
404         pushq   $-1                     /* ORIG_RAX: no syscall to restart */
405
406         /*
407          * If the entry is from userspace, switch stacks and treat it as
408          * a normal entry.
409          */
410         testb   $3, CS-ORIG_RAX(%rsp)
411         jnz     .Lfrom_usermode_switch_stack_\@
412
413         /* paranoid_entry returns GS information for paranoid_exit in EBX. */
414         call    paranoid_entry
415
416         UNWIND_HINT_REGS
417
418         movq    %rsp, %rdi              /* pt_regs pointer */
419
420         call    \cfunc
421
422         jmp     paranoid_exit
423
424         /* Switch to the regular task stack and use the noist entry point */
425 .Lfrom_usermode_switch_stack_\@:
426         idtentry_body noist_\cfunc, has_error_code=0
427
428 _ASM_NOKPROBE(\asmsym)
429 SYM_CODE_END(\asmsym)
430 .endm
431
432 #ifdef CONFIG_AMD_MEM_ENCRYPT
433 /**
434  * idtentry_vc - Macro to generate entry stub for #VC
435  * @vector:             Vector number
436  * @asmsym:             ASM symbol for the entry point
437  * @cfunc:              C function to be called
438  *
439  * The macro emits code to set up the kernel context for #VC. The #VC handler
440  * runs on an IST stack and needs to be able to cause nested #VC exceptions.
441  *
442  * To make this work the #VC entry code tries its best to pretend it doesn't use
443  * an IST stack by switching to the task stack if coming from user-space (which
444  * includes early SYSCALL entry path) or back to the stack in the IRET frame if
445  * entered from kernel-mode.
446  *
447  * If entered from kernel-mode the return stack is validated first, and if it is
448  * not safe to use (e.g. because it points to the entry stack) the #VC handler
449  * will switch to a fall-back stack (VC2) and call a special handler function.
450  *
451  * The macro is only used for one vector, but it is planned to be extended in
452  * the future for the #HV exception.
453  */
454 .macro idtentry_vc vector asmsym cfunc
455 SYM_CODE_START(\asmsym)
456         UNWIND_HINT_IRET_ENTRY
457         ENDBR
458         ASM_CLAC
459         cld
460
461         /*
462          * If the entry is from userspace, switch stacks and treat it as
463          * a normal entry.
464          */
465         testb   $3, CS-ORIG_RAX(%rsp)
466         jnz     .Lfrom_usermode_switch_stack_\@
467
468         /*
469          * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
470          * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
471          */
472         call    paranoid_entry
473
474         UNWIND_HINT_REGS
475
476         /*
477          * Switch off the IST stack to make it free for nested exceptions. The
478          * vc_switch_off_ist() function will switch back to the interrupted
479          * stack if it is safe to do so. If not it switches to the VC fall-back
480          * stack.
481          */
482         movq    %rsp, %rdi              /* pt_regs pointer */
483         call    vc_switch_off_ist
484         movq    %rax, %rsp              /* Switch to new stack */
485
486         ENCODE_FRAME_POINTER
487         UNWIND_HINT_REGS
488
489         /* Update pt_regs */
490         movq    ORIG_RAX(%rsp), %rsi    /* get error code into 2nd argument*/
491         movq    $-1, ORIG_RAX(%rsp)     /* no syscall to restart */
492
493         movq    %rsp, %rdi              /* pt_regs pointer */
494
495         call    kernel_\cfunc
496
497         /*
498          * No need to switch back to the IST stack. The current stack is either
499          * identical to the stack in the IRET frame or the VC fall-back stack,
500          * so it is definitely mapped even with PTI enabled.
501          */
502         jmp     paranoid_exit
503
504         /* Switch to the regular task stack */
505 .Lfrom_usermode_switch_stack_\@:
506         idtentry_body user_\cfunc, has_error_code=1
507
508 _ASM_NOKPROBE(\asmsym)
509 SYM_CODE_END(\asmsym)
510 .endm
511 #endif
512
513 /*
514  * Double fault entry. Straight paranoid. No checks from which context
515  * this comes because for the espfix induced #DF this would do the wrong
516  * thing.
517  */
518 .macro idtentry_df vector asmsym cfunc
519 SYM_CODE_START(\asmsym)
520         UNWIND_HINT_IRET_ENTRY offset=8
521         ENDBR
522         ASM_CLAC
523         cld
524
525         /* paranoid_entry returns GS information for paranoid_exit in EBX. */
526         call    paranoid_entry
527         UNWIND_HINT_REGS
528
529         movq    %rsp, %rdi              /* pt_regs pointer into first argument */
530         movq    ORIG_RAX(%rsp), %rsi    /* get error code into 2nd argument*/
531         movq    $-1, ORIG_RAX(%rsp)     /* no syscall to restart */
532         call    \cfunc
533
534         /* For some configurations \cfunc ends up being a noreturn. */
535         REACHABLE
536
537         jmp     paranoid_exit
538
539 _ASM_NOKPROBE(\asmsym)
540 SYM_CODE_END(\asmsym)
541 .endm
542
543 /*
544  * Include the defines which emit the idt entries which are shared
545  * shared between 32 and 64 bit and emit the __irqentry_text_* markers
546  * so the stacktrace boundary checks work.
547  */
548         __ALIGN
549         .globl __irqentry_text_start
550 __irqentry_text_start:
551
552 #include <asm/idtentry.h>
553
554         __ALIGN
555         .globl __irqentry_text_end
556 __irqentry_text_end:
557         ANNOTATE_NOENDBR
558
559 SYM_CODE_START_LOCAL(common_interrupt_return)
560 SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
561         IBRS_EXIT
562 #ifdef CONFIG_XEN_PV
563         ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
564 #endif
565 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
566         ALTERNATIVE "", "jmp .Lpti_restore_regs_and_return_to_usermode", X86_FEATURE_PTI
567 #endif
568
569         STACKLEAK_ERASE
570         POP_REGS
571         add     $8, %rsp        /* orig_ax */
572         UNWIND_HINT_IRET_REGS
573
574 .Lswapgs_and_iret:
575         swapgs
576         CLEAR_CPU_BUFFERS
577         /* Assert that the IRET frame indicates user mode. */
578         testb   $3, 8(%rsp)
579         jnz     .Lnative_iret
580         ud2
581
582 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
583 .Lpti_restore_regs_and_return_to_usermode:
584         POP_REGS pop_rdi=0
585
586         /*
587          * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
588          * Save old stack pointer and switch to trampoline stack.
589          */
590         movq    %rsp, %rdi
591         movq    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
592         UNWIND_HINT_END_OF_STACK
593
594         /* Copy the IRET frame to the trampoline stack. */
595         pushq   6*8(%rdi)       /* SS */
596         pushq   5*8(%rdi)       /* RSP */
597         pushq   4*8(%rdi)       /* EFLAGS */
598         pushq   3*8(%rdi)       /* CS */
599         pushq   2*8(%rdi)       /* RIP */
600
601         /* Push user RDI on the trampoline stack. */
602         pushq   (%rdi)
603
604         /*
605          * We are on the trampoline stack.  All regs except RDI are live.
606          * We can do future final exit work right here.
607          */
608         STACKLEAK_ERASE_NOCLOBBER
609
610         push    %rax
611         SWITCH_TO_USER_CR3 scratch_reg=%rdi scratch_reg2=%rax
612         pop     %rax
613
614         /* Restore RDI. */
615         popq    %rdi
616         jmp     .Lswapgs_and_iret
617 #endif
618
619 SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
620 #ifdef CONFIG_DEBUG_ENTRY
621         /* Assert that pt_regs indicates kernel mode. */
622         testb   $3, CS(%rsp)
623         jz      1f
624         ud2
625 1:
626 #endif
627         POP_REGS
628         addq    $8, %rsp        /* skip regs->orig_ax */
629         /*
630          * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
631          * when returning from IPI handler.
632          */
633 #ifdef CONFIG_XEN_PV
634 SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
635         ANNOTATE_NOENDBR
636         .byte 0xe9
637         .long .Lnative_iret - (. + 4)
638 #endif
639
640 .Lnative_iret:
641         UNWIND_HINT_IRET_REGS
642         /*
643          * Are we returning to a stack segment from the LDT?  Note: in
644          * 64-bit mode SS:RSP on the exception stack is always valid.
645          */
646 #ifdef CONFIG_X86_ESPFIX64
647         testb   $4, (SS-RIP)(%rsp)
648         jnz     native_irq_return_ldt
649 #endif
650
651 SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
652         ANNOTATE_NOENDBR // exc_double_fault
653         /*
654          * This may fault.  Non-paranoid faults on return to userspace are
655          * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
656          * Double-faults due to espfix64 are handled in exc_double_fault.
657          * Other faults here are fatal.
658          */
659         iretq
660
661 #ifdef CONFIG_X86_ESPFIX64
662 native_irq_return_ldt:
663         /*
664          * We are running with user GSBASE.  All GPRs contain their user
665          * values.  We have a percpu ESPFIX stack that is eight slots
666          * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
667          * of the ESPFIX stack.
668          *
669          * We clobber RAX and RDI in this code.  We stash RDI on the
670          * normal stack and RAX on the ESPFIX stack.
671          *
672          * The ESPFIX stack layout we set up looks like this:
673          *
674          * --- top of ESPFIX stack ---
675          * SS
676          * RSP
677          * RFLAGS
678          * CS
679          * RIP  <-- RSP points here when we're done
680          * RAX  <-- espfix_waddr points here
681          * --- bottom of ESPFIX stack ---
682          */
683
684         pushq   %rdi                            /* Stash user RDI */
685         swapgs                                  /* to kernel GS */
686         SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi   /* to kernel CR3 */
687
688         movq    PER_CPU_VAR(espfix_waddr), %rdi
689         movq    %rax, (0*8)(%rdi)               /* user RAX */
690         movq    (1*8)(%rsp), %rax               /* user RIP */
691         movq    %rax, (1*8)(%rdi)
692         movq    (2*8)(%rsp), %rax               /* user CS */
693         movq    %rax, (2*8)(%rdi)
694         movq    (3*8)(%rsp), %rax               /* user RFLAGS */
695         movq    %rax, (3*8)(%rdi)
696         movq    (5*8)(%rsp), %rax               /* user SS */
697         movq    %rax, (5*8)(%rdi)
698         movq    (4*8)(%rsp), %rax               /* user RSP */
699         movq    %rax, (4*8)(%rdi)
700         /* Now RAX == RSP. */
701
702         andl    $0xffff0000, %eax               /* RAX = (RSP & 0xffff0000) */
703
704         /*
705          * espfix_stack[31:16] == 0.  The page tables are set up such that
706          * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
707          * espfix_waddr for any X.  That is, there are 65536 RO aliases of
708          * the same page.  Set up RSP so that RSP[31:16] contains the
709          * respective 16 bits of the /userspace/ RSP and RSP nonetheless
710          * still points to an RO alias of the ESPFIX stack.
711          */
712         orq     PER_CPU_VAR(espfix_stack), %rax
713
714         SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
715         swapgs                                  /* to user GS */
716         popq    %rdi                            /* Restore user RDI */
717
718         movq    %rax, %rsp
719         UNWIND_HINT_IRET_REGS offset=8
720
721         /*
722          * At this point, we cannot write to the stack any more, but we can
723          * still read.
724          */
725         popq    %rax                            /* Restore user RAX */
726
727         CLEAR_CPU_BUFFERS
728
729         /*
730          * RSP now points to an ordinary IRET frame, except that the page
731          * is read-only and RSP[31:16] are preloaded with the userspace
732          * values.  We can now IRET back to userspace.
733          */
734         jmp     native_irq_return_iret
735 #endif
736 SYM_CODE_END(common_interrupt_return)
737 _ASM_NOKPROBE(common_interrupt_return)
738
739 /*
740  * Reload gs selector with exception handling
741  *  di:  new selector
742  *
743  * Is in entry.text as it shouldn't be instrumented.
744  */
745 SYM_FUNC_START(asm_load_gs_index)
746         FRAME_BEGIN
747         swapgs
748 .Lgs_change:
749         ANNOTATE_NOENDBR // error_entry
750         movl    %edi, %gs
751 2:      ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
752         swapgs
753         FRAME_END
754         RET
755
756         /* running with kernelgs */
757 .Lbad_gs:
758         swapgs                                  /* switch back to user gs */
759 .macro ZAP_GS
760         /* This can't be a string because the preprocessor needs to see it. */
761         movl $__USER_DS, %eax
762         movl %eax, %gs
763 .endm
764         ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
765         xorl    %eax, %eax
766         movl    %eax, %gs
767         jmp     2b
768
769         _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
770
771 SYM_FUNC_END(asm_load_gs_index)
772 EXPORT_SYMBOL(asm_load_gs_index)
773
774 #ifdef CONFIG_XEN_PV
775 /*
776  * A note on the "critical region" in our callback handler.
777  * We want to avoid stacking callback handlers due to events occurring
778  * during handling of the last event. To do this, we keep events disabled
779  * until we've done all processing. HOWEVER, we must enable events before
780  * popping the stack frame (can't be done atomically) and so it would still
781  * be possible to get enough handler activations to overflow the stack.
782  * Although unlikely, bugs of that kind are hard to track down, so we'd
783  * like to avoid the possibility.
784  * So, on entry to the handler we detect whether we interrupted an
785  * existing activation in its critical region -- if so, we pop the current
786  * activation and restart the handler using the previous one.
787  *
788  * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
789  */
790         __FUNC_ALIGN
791 SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
792
793 /*
794  * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
795  * see the correct pointer to the pt_regs
796  */
797         UNWIND_HINT_FUNC
798         movq    %rdi, %rsp                      /* we don't return, adjust the stack frame */
799         UNWIND_HINT_REGS
800
801         call    xen_pv_evtchn_do_upcall
802
803         jmp     error_return
804 SYM_CODE_END(exc_xen_hypervisor_callback)
805
806 /*
807  * Hypervisor uses this for application faults while it executes.
808  * We get here for two reasons:
809  *  1. Fault while reloading DS, ES, FS or GS
810  *  2. Fault while executing IRET
811  * Category 1 we do not need to fix up as Xen has already reloaded all segment
812  * registers that could be reloaded and zeroed the others.
813  * Category 2 we fix up by killing the current process. We cannot use the
814  * normal Linux return path in this case because if we use the IRET hypercall
815  * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
816  * We distinguish between categories by comparing each saved segment register
817  * with its current contents: any discrepancy means we in category 1.
818  */
819         __FUNC_ALIGN
820 SYM_CODE_START_NOALIGN(xen_failsafe_callback)
821         UNWIND_HINT_UNDEFINED
822         ENDBR
823         movl    %ds, %ecx
824         cmpw    %cx, 0x10(%rsp)
825         jne     1f
826         movl    %es, %ecx
827         cmpw    %cx, 0x18(%rsp)
828         jne     1f
829         movl    %fs, %ecx
830         cmpw    %cx, 0x20(%rsp)
831         jne     1f
832         movl    %gs, %ecx
833         cmpw    %cx, 0x28(%rsp)
834         jne     1f
835         /* All segments match their saved values => Category 2 (Bad IRET). */
836         movq    (%rsp), %rcx
837         movq    8(%rsp), %r11
838         addq    $0x30, %rsp
839         pushq   $0                              /* RIP */
840         UNWIND_HINT_IRET_REGS offset=8
841         jmp     asm_exc_general_protection
842 1:      /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
843         movq    (%rsp), %rcx
844         movq    8(%rsp), %r11
845         addq    $0x30, %rsp
846         UNWIND_HINT_IRET_REGS
847         pushq   $-1 /* orig_ax = -1 => not a system call */
848         PUSH_AND_CLEAR_REGS
849         ENCODE_FRAME_POINTER
850         jmp     error_return
851 SYM_CODE_END(xen_failsafe_callback)
852 #endif /* CONFIG_XEN_PV */
853
854 /*
855  * Save all registers in pt_regs. Return GSBASE related information
856  * in EBX depending on the availability of the FSGSBASE instructions:
857  *
858  * FSGSBASE     R/EBX
859  *     N        0 -> SWAPGS on exit
860  *              1 -> no SWAPGS on exit
861  *
862  *     Y        GSBASE value at entry, must be restored in paranoid_exit
863  *
864  * R14 - old CR3
865  * R15 - old SPEC_CTRL
866  */
867 SYM_CODE_START(paranoid_entry)
868         ANNOTATE_NOENDBR
869         UNWIND_HINT_FUNC
870         PUSH_AND_CLEAR_REGS save_ret=1
871         ENCODE_FRAME_POINTER 8
872
873         /*
874          * Always stash CR3 in %r14.  This value will be restored,
875          * verbatim, at exit.  Needed if paranoid_entry interrupted
876          * another entry that already switched to the user CR3 value
877          * but has not yet returned to userspace.
878          *
879          * This is also why CS (stashed in the "iret frame" by the
880          * hardware at entry) can not be used: this may be a return
881          * to kernel code, but with a user CR3 value.
882          *
883          * Switching CR3 does not depend on kernel GSBASE so it can
884          * be done before switching to the kernel GSBASE. This is
885          * required for FSGSBASE because the kernel GSBASE has to
886          * be retrieved from a kernel internal table.
887          */
888         SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
889
890         /*
891          * Handling GSBASE depends on the availability of FSGSBASE.
892          *
893          * Without FSGSBASE the kernel enforces that negative GSBASE
894          * values indicate kernel GSBASE. With FSGSBASE no assumptions
895          * can be made about the GSBASE value when entering from user
896          * space.
897          */
898         ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
899
900         /*
901          * Read the current GSBASE and store it in %rbx unconditionally,
902          * retrieve and set the current CPUs kernel GSBASE. The stored value
903          * has to be restored in paranoid_exit unconditionally.
904          *
905          * The unconditional write to GS base below ensures that no subsequent
906          * loads based on a mispredicted GS base can happen, therefore no LFENCE
907          * is needed here.
908          */
909         SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
910         jmp .Lparanoid_gsbase_done
911
912 .Lparanoid_entry_checkgs:
913         /* EBX = 1 -> kernel GSBASE active, no restore required */
914         movl    $1, %ebx
915
916         /*
917          * The kernel-enforced convention is a negative GSBASE indicates
918          * a kernel value. No SWAPGS needed on entry and exit.
919          */
920         movl    $MSR_GS_BASE, %ecx
921         rdmsr
922         testl   %edx, %edx
923         js      .Lparanoid_kernel_gsbase
924
925         /* EBX = 0 -> SWAPGS required on exit */
926         xorl    %ebx, %ebx
927         swapgs
928 .Lparanoid_kernel_gsbase:
929         FENCE_SWAPGS_KERNEL_ENTRY
930 .Lparanoid_gsbase_done:
931
932         /*
933          * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
934          * CR3 above, keep the old value in a callee saved register.
935          */
936         IBRS_ENTER save_reg=%r15
937         UNTRAIN_RET_FROM_CALL
938
939         RET
940 SYM_CODE_END(paranoid_entry)
941
942 /*
943  * "Paranoid" exit path from exception stack.  This is invoked
944  * only on return from non-NMI IST interrupts that came
945  * from kernel space.
946  *
947  * We may be returning to very strange contexts (e.g. very early
948  * in syscall entry), so checking for preemption here would
949  * be complicated.  Fortunately, there's no good reason to try
950  * to handle preemption here.
951  *
952  * R/EBX contains the GSBASE related information depending on the
953  * availability of the FSGSBASE instructions:
954  *
955  * FSGSBASE     R/EBX
956  *     N        0 -> SWAPGS on exit
957  *              1 -> no SWAPGS on exit
958  *
959  *     Y        User space GSBASE, must be restored unconditionally
960  *
961  * R14 - old CR3
962  * R15 - old SPEC_CTRL
963  */
964 SYM_CODE_START_LOCAL(paranoid_exit)
965         UNWIND_HINT_REGS
966
967         /*
968          * Must restore IBRS state before both CR3 and %GS since we need access
969          * to the per-CPU x86_spec_ctrl_shadow variable.
970          */
971         IBRS_EXIT save_reg=%r15
972
973         /*
974          * The order of operations is important. PARANOID_RESTORE_CR3 requires
975          * kernel GSBASE.
976          *
977          * NB to anyone to try to optimize this code: this code does
978          * not execute at all for exceptions from user mode. Those
979          * exceptions go through error_return instead.
980          */
981         PARANOID_RESTORE_CR3 scratch_reg=%rax save_reg=%r14
982
983         /* Handle the three GSBASE cases */
984         ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
985
986         /* With FSGSBASE enabled, unconditionally restore GSBASE */
987         wrgsbase        %rbx
988         jmp             restore_regs_and_return_to_kernel
989
990 .Lparanoid_exit_checkgs:
991         /* On non-FSGSBASE systems, conditionally do SWAPGS */
992         testl           %ebx, %ebx
993         jnz             restore_regs_and_return_to_kernel
994
995         /* We are returning to a context with user GSBASE */
996         swapgs
997         jmp             restore_regs_and_return_to_kernel
998 SYM_CODE_END(paranoid_exit)
999
1000 /*
1001  * Switch GS and CR3 if needed.
1002  */
1003 SYM_CODE_START(error_entry)
1004         ANNOTATE_NOENDBR
1005         UNWIND_HINT_FUNC
1006
1007         PUSH_AND_CLEAR_REGS save_ret=1
1008         ENCODE_FRAME_POINTER 8
1009
1010         testb   $3, CS+8(%rsp)
1011         jz      .Lerror_kernelspace
1012
1013         /*
1014          * We entered from user mode or we're pretending to have entered
1015          * from user mode due to an IRET fault.
1016          */
1017         swapgs
1018         FENCE_SWAPGS_USER_ENTRY
1019         /* We have user CR3.  Change to kernel CR3. */
1020         SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1021         IBRS_ENTER
1022         UNTRAIN_RET_FROM_CALL
1023
1024         leaq    8(%rsp), %rdi                   /* arg0 = pt_regs pointer */
1025         /* Put us onto the real thread stack. */
1026         jmp     sync_regs
1027
1028         /*
1029          * There are two places in the kernel that can potentially fault with
1030          * usergs. Handle them here.  B stepping K8s sometimes report a
1031          * truncated RIP for IRET exceptions returning to compat mode. Check
1032          * for these here too.
1033          */
1034 .Lerror_kernelspace:
1035         leaq    native_irq_return_iret(%rip), %rcx
1036         cmpq    %rcx, RIP+8(%rsp)
1037         je      .Lerror_bad_iret
1038         movl    %ecx, %eax                      /* zero extend */
1039         cmpq    %rax, RIP+8(%rsp)
1040         je      .Lbstep_iret
1041         cmpq    $.Lgs_change, RIP+8(%rsp)
1042         jne     .Lerror_entry_done_lfence
1043
1044         /*
1045          * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1046          * gsbase and proceed.  We'll fix up the exception and land in
1047          * .Lgs_change's error handler with kernel gsbase.
1048          */
1049         swapgs
1050
1051         /*
1052          * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1053          * kernel or user gsbase.
1054          */
1055 .Lerror_entry_done_lfence:
1056         FENCE_SWAPGS_KERNEL_ENTRY
1057         CALL_DEPTH_ACCOUNT
1058         leaq    8(%rsp), %rax                   /* return pt_regs pointer */
1059         VALIDATE_UNRET_END
1060         RET
1061
1062 .Lbstep_iret:
1063         /* Fix truncated RIP */
1064         movq    %rcx, RIP+8(%rsp)
1065         /* fall through */
1066
1067 .Lerror_bad_iret:
1068         /*
1069          * We came from an IRET to user mode, so we have user
1070          * gsbase and CR3.  Switch to kernel gsbase and CR3:
1071          */
1072         swapgs
1073         FENCE_SWAPGS_USER_ENTRY
1074         SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1075         IBRS_ENTER
1076         UNTRAIN_RET_FROM_CALL
1077
1078         /*
1079          * Pretend that the exception came from user mode: set up pt_regs
1080          * as if we faulted immediately after IRET.
1081          */
1082         leaq    8(%rsp), %rdi                   /* arg0 = pt_regs pointer */
1083         call    fixup_bad_iret
1084         mov     %rax, %rdi
1085         jmp     sync_regs
1086 SYM_CODE_END(error_entry)
1087
1088 SYM_CODE_START_LOCAL(error_return)
1089         UNWIND_HINT_REGS
1090         DEBUG_ENTRY_ASSERT_IRQS_OFF
1091         testb   $3, CS(%rsp)
1092         jz      restore_regs_and_return_to_kernel
1093         jmp     swapgs_restore_regs_and_return_to_usermode
1094 SYM_CODE_END(error_return)
1095
1096 /*
1097  * Runs on exception stack.  Xen PV does not go through this path at all,
1098  * so we can use real assembly here.
1099  *
1100  * Registers:
1101  *      %r14: Used to save/restore the CR3 of the interrupted context
1102  *            when MITIGATION_PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1103  */
1104 SYM_CODE_START(asm_exc_nmi)
1105         UNWIND_HINT_IRET_ENTRY
1106         ENDBR
1107
1108         /*
1109          * We allow breakpoints in NMIs. If a breakpoint occurs, then
1110          * the iretq it performs will take us out of NMI context.
1111          * This means that we can have nested NMIs where the next
1112          * NMI is using the top of the stack of the previous NMI. We
1113          * can't let it execute because the nested NMI will corrupt the
1114          * stack of the previous NMI. NMI handlers are not re-entrant
1115          * anyway.
1116          *
1117          * To handle this case we do the following:
1118          *  Check a special location on the stack that contains a
1119          *  variable that is set when NMIs are executing.
1120          *  The interrupted task's stack is also checked to see if it
1121          *  is an NMI stack.
1122          *  If the variable is not set and the stack is not the NMI
1123          *  stack then:
1124          *    o Set the special variable on the stack
1125          *    o Copy the interrupt frame into an "outermost" location on the
1126          *      stack
1127          *    o Copy the interrupt frame into an "iret" location on the stack
1128          *    o Continue processing the NMI
1129          *  If the variable is set or the previous stack is the NMI stack:
1130          *    o Modify the "iret" location to jump to the repeat_nmi
1131          *    o return back to the first NMI
1132          *
1133          * Now on exit of the first NMI, we first clear the stack variable
1134          * The NMI stack will tell any nested NMIs at that point that it is
1135          * nested. Then we pop the stack normally with iret, and if there was
1136          * a nested NMI that updated the copy interrupt stack frame, a
1137          * jump will be made to the repeat_nmi code that will handle the second
1138          * NMI.
1139          *
1140          * However, espfix prevents us from directly returning to userspace
1141          * with a single IRET instruction.  Similarly, IRET to user mode
1142          * can fault.  We therefore handle NMIs from user space like
1143          * other IST entries.
1144          */
1145
1146         ASM_CLAC
1147         cld
1148
1149         /* Use %rdx as our temp variable throughout */
1150         pushq   %rdx
1151
1152         testb   $3, CS-RIP+8(%rsp)
1153         jz      .Lnmi_from_kernel
1154
1155         /*
1156          * NMI from user mode.  We need to run on the thread stack, but we
1157          * can't go through the normal entry paths: NMIs are masked, and
1158          * we don't want to enable interrupts, because then we'll end
1159          * up in an awkward situation in which IRQs are on but NMIs
1160          * are off.
1161          *
1162          * We also must not push anything to the stack before switching
1163          * stacks lest we corrupt the "NMI executing" variable.
1164          */
1165
1166         swapgs
1167         FENCE_SWAPGS_USER_ENTRY
1168         SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1169         movq    %rsp, %rdx
1170         movq    PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
1171         UNWIND_HINT_IRET_REGS base=%rdx offset=8
1172         pushq   5*8(%rdx)       /* pt_regs->ss */
1173         pushq   4*8(%rdx)       /* pt_regs->rsp */
1174         pushq   3*8(%rdx)       /* pt_regs->flags */
1175         pushq   2*8(%rdx)       /* pt_regs->cs */
1176         pushq   1*8(%rdx)       /* pt_regs->rip */
1177         UNWIND_HINT_IRET_REGS
1178         pushq   $-1             /* pt_regs->orig_ax */
1179         PUSH_AND_CLEAR_REGS rdx=(%rdx)
1180         ENCODE_FRAME_POINTER
1181
1182         IBRS_ENTER
1183         UNTRAIN_RET
1184
1185         /*
1186          * At this point we no longer need to worry about stack damage
1187          * due to nesting -- we're on the normal thread stack and we're
1188          * done with the NMI stack.
1189          */
1190
1191         movq    %rsp, %rdi
1192         call    exc_nmi
1193
1194         /*
1195          * Return back to user mode.  We must *not* do the normal exit
1196          * work, because we don't want to enable interrupts.
1197          */
1198         jmp     swapgs_restore_regs_and_return_to_usermode
1199
1200 .Lnmi_from_kernel:
1201         /*
1202          * Here's what our stack frame will look like:
1203          * +---------------------------------------------------------+
1204          * | original SS                                             |
1205          * | original Return RSP                                     |
1206          * | original RFLAGS                                         |
1207          * | original CS                                             |
1208          * | original RIP                                            |
1209          * +---------------------------------------------------------+
1210          * | temp storage for rdx                                    |
1211          * +---------------------------------------------------------+
1212          * | "NMI executing" variable                                |
1213          * +---------------------------------------------------------+
1214          * | iret SS          } Copied from "outermost" frame        |
1215          * | iret Return RSP  } on each loop iteration; overwritten  |
1216          * | iret RFLAGS      } by a nested NMI to force another     |
1217          * | iret CS          } iteration if needed.                 |
1218          * | iret RIP         }                                      |
1219          * +---------------------------------------------------------+
1220          * | outermost SS          } initialized in first_nmi;       |
1221          * | outermost Return RSP  } will not be changed before      |
1222          * | outermost RFLAGS      } NMI processing is done.         |
1223          * | outermost CS          } Copied to "iret" frame on each  |
1224          * | outermost RIP         } iteration.                      |
1225          * +---------------------------------------------------------+
1226          * | pt_regs                                                 |
1227          * +---------------------------------------------------------+
1228          *
1229          * The "original" frame is used by hardware.  Before re-enabling
1230          * NMIs, we need to be done with it, and we need to leave enough
1231          * space for the asm code here.
1232          *
1233          * We return by executing IRET while RSP points to the "iret" frame.
1234          * That will either return for real or it will loop back into NMI
1235          * processing.
1236          *
1237          * The "outermost" frame is copied to the "iret" frame on each
1238          * iteration of the loop, so each iteration starts with the "iret"
1239          * frame pointing to the final return target.
1240          */
1241
1242         /*
1243          * Determine whether we're a nested NMI.
1244          *
1245          * If we interrupted kernel code between repeat_nmi and
1246          * end_repeat_nmi, then we are a nested NMI.  We must not
1247          * modify the "iret" frame because it's being written by
1248          * the outer NMI.  That's okay; the outer NMI handler is
1249          * about to call exc_nmi() anyway, so we can just resume
1250          * the outer NMI.
1251          */
1252
1253         movq    $repeat_nmi, %rdx
1254         cmpq    8(%rsp), %rdx
1255         ja      1f
1256         movq    $end_repeat_nmi, %rdx
1257         cmpq    8(%rsp), %rdx
1258         ja      nested_nmi_out
1259 1:
1260
1261         /*
1262          * Now check "NMI executing".  If it's set, then we're nested.
1263          * This will not detect if we interrupted an outer NMI just
1264          * before IRET.
1265          */
1266         cmpl    $1, -8(%rsp)
1267         je      nested_nmi
1268
1269         /*
1270          * Now test if the previous stack was an NMI stack.  This covers
1271          * the case where we interrupt an outer NMI after it clears
1272          * "NMI executing" but before IRET.  We need to be careful, though:
1273          * there is one case in which RSP could point to the NMI stack
1274          * despite there being no NMI active: naughty userspace controls
1275          * RSP at the very beginning of the SYSCALL targets.  We can
1276          * pull a fast one on naughty userspace, though: we program
1277          * SYSCALL to mask DF, so userspace cannot cause DF to be set
1278          * if it controls the kernel's RSP.  We set DF before we clear
1279          * "NMI executing".
1280          */
1281         lea     6*8(%rsp), %rdx
1282         /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1283         cmpq    %rdx, 4*8(%rsp)
1284         /* If the stack pointer is above the NMI stack, this is a normal NMI */
1285         ja      first_nmi
1286
1287         subq    $EXCEPTION_STKSZ, %rdx
1288         cmpq    %rdx, 4*8(%rsp)
1289         /* If it is below the NMI stack, it is a normal NMI */
1290         jb      first_nmi
1291
1292         /* Ah, it is within the NMI stack. */
1293
1294         testb   $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1295         jz      first_nmi       /* RSP was user controlled. */
1296
1297         /* This is a nested NMI. */
1298
1299 nested_nmi:
1300         /*
1301          * Modify the "iret" frame to point to repeat_nmi, forcing another
1302          * iteration of NMI handling.
1303          */
1304         subq    $8, %rsp
1305         leaq    -10*8(%rsp), %rdx
1306         pushq   $__KERNEL_DS
1307         pushq   %rdx
1308         pushfq
1309         pushq   $__KERNEL_CS
1310         pushq   $repeat_nmi
1311
1312         /* Put stack back */
1313         addq    $(6*8), %rsp
1314
1315 nested_nmi_out:
1316         popq    %rdx
1317
1318         /* We are returning to kernel mode, so this cannot result in a fault. */
1319         iretq
1320
1321 first_nmi:
1322         /* Restore rdx. */
1323         movq    (%rsp), %rdx
1324
1325         /* Make room for "NMI executing". */
1326         pushq   $0
1327
1328         /* Leave room for the "iret" frame */
1329         subq    $(5*8), %rsp
1330
1331         /* Copy the "original" frame to the "outermost" frame */
1332         .rept 5
1333         pushq   11*8(%rsp)
1334         .endr
1335         UNWIND_HINT_IRET_REGS
1336
1337         /* Everything up to here is safe from nested NMIs */
1338
1339 #ifdef CONFIG_DEBUG_ENTRY
1340         /*
1341          * For ease of testing, unmask NMIs right away.  Disabled by
1342          * default because IRET is very expensive.
1343          */
1344         pushq   $0              /* SS */
1345         pushq   %rsp            /* RSP (minus 8 because of the previous push) */
1346         addq    $8, (%rsp)      /* Fix up RSP */
1347         pushfq                  /* RFLAGS */
1348         pushq   $__KERNEL_CS    /* CS */
1349         pushq   $1f             /* RIP */
1350         iretq                   /* continues at repeat_nmi below */
1351         UNWIND_HINT_IRET_REGS
1352 1:
1353 #endif
1354
1355 repeat_nmi:
1356         ANNOTATE_NOENDBR // this code
1357         /*
1358          * If there was a nested NMI, the first NMI's iret will return
1359          * here. But NMIs are still enabled and we can take another
1360          * nested NMI. The nested NMI checks the interrupted RIP to see
1361          * if it is between repeat_nmi and end_repeat_nmi, and if so
1362          * it will just return, as we are about to repeat an NMI anyway.
1363          * This makes it safe to copy to the stack frame that a nested
1364          * NMI will update.
1365          *
1366          * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1367          * we're repeating an NMI, gsbase has the same value that it had on
1368          * the first iteration.  paranoid_entry will load the kernel
1369          * gsbase if needed before we call exc_nmi().  "NMI executing"
1370          * is zero.
1371          */
1372         movq    $1, 10*8(%rsp)          /* Set "NMI executing". */
1373
1374         /*
1375          * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1376          * here must not modify the "iret" frame while we're writing to
1377          * it or it will end up containing garbage.
1378          */
1379         addq    $(10*8), %rsp
1380         .rept 5
1381         pushq   -6*8(%rsp)
1382         .endr
1383         subq    $(5*8), %rsp
1384 end_repeat_nmi:
1385         ANNOTATE_NOENDBR // this code
1386
1387         /*
1388          * Everything below this point can be preempted by a nested NMI.
1389          * If this happens, then the inner NMI will change the "iret"
1390          * frame to point back to repeat_nmi.
1391          */
1392         pushq   $-1                             /* ORIG_RAX: no syscall to restart */
1393
1394         /*
1395          * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1396          * as we should not be calling schedule in NMI context.
1397          * Even with normal interrupts enabled. An NMI should not be
1398          * setting NEED_RESCHED or anything that normal interrupts and
1399          * exceptions might do.
1400          */
1401         call    paranoid_entry
1402         UNWIND_HINT_REGS
1403
1404         movq    %rsp, %rdi
1405         call    exc_nmi
1406
1407         /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1408         IBRS_EXIT save_reg=%r15
1409
1410         PARANOID_RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1411
1412         /*
1413          * The above invocation of paranoid_entry stored the GSBASE
1414          * related information in R/EBX depending on the availability
1415          * of FSGSBASE.
1416          *
1417          * If FSGSBASE is enabled, restore the saved GSBASE value
1418          * unconditionally, otherwise take the conditional SWAPGS path.
1419          */
1420         ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1421
1422         wrgsbase        %rbx
1423         jmp     nmi_restore
1424
1425 nmi_no_fsgsbase:
1426         /* EBX == 0 -> invoke SWAPGS */
1427         testl   %ebx, %ebx
1428         jnz     nmi_restore
1429
1430 nmi_swapgs:
1431         swapgs
1432
1433 nmi_restore:
1434         POP_REGS
1435
1436         /*
1437          * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1438          * at the "iret" frame.
1439          */
1440         addq    $6*8, %rsp
1441
1442         /*
1443          * Clear "NMI executing".  Set DF first so that we can easily
1444          * distinguish the remaining code between here and IRET from
1445          * the SYSCALL entry and exit paths.
1446          *
1447          * We arguably should just inspect RIP instead, but I (Andy) wrote
1448          * this code when I had the misapprehension that Xen PV supported
1449          * NMIs, and Xen PV would break that approach.
1450          */
1451         std
1452         movq    $0, 5*8(%rsp)           /* clear "NMI executing" */
1453
1454         /*
1455          * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like
1456          * NMI in kernel after user state is restored. For an unprivileged user
1457          * these conditions are hard to meet.
1458          */
1459
1460         /*
1461          * iretq reads the "iret" frame and exits the NMI stack in a
1462          * single instruction.  We are returning to kernel mode, so this
1463          * cannot result in a fault.  Similarly, we don't need to worry
1464          * about espfix64 on the way back to kernel mode.
1465          */
1466         iretq
1467 SYM_CODE_END(asm_exc_nmi)
1468
1469 /*
1470  * This handles SYSCALL from 32-bit code.  There is no way to program
1471  * MSRs to fully disable 32-bit SYSCALL.
1472  */
1473 SYM_CODE_START(entry_SYSCALL32_ignore)
1474         UNWIND_HINT_END_OF_STACK
1475         ENDBR
1476         mov     $-ENOSYS, %eax
1477         CLEAR_CPU_BUFFERS
1478         sysretl
1479 SYM_CODE_END(entry_SYSCALL32_ignore)
1480
1481 .pushsection .text, "ax"
1482         __FUNC_ALIGN
1483 SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1484         UNWIND_HINT_FUNC
1485         /* Prevent any naive code from trying to unwind to our caller. */
1486         xorl    %ebp, %ebp
1487
1488         movq    PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax
1489         leaq    -PTREGS_SIZE(%rax), %rsp
1490         UNWIND_HINT_REGS
1491
1492         call    make_task_dead
1493 SYM_CODE_END(rewind_stack_and_make_dead)
1494 .popsection
1495
1496 /*
1497  * This sequence executes branches in order to remove user branch information
1498  * from the branch history tracker in the Branch Predictor, therefore removing
1499  * user influence on subsequent BTB lookups.
1500  *
1501  * It should be used on parts prior to Alder Lake. Newer parts should use the
1502  * BHI_DIS_S hardware control instead. If a pre-Alder Lake part is being
1503  * virtualized on newer hardware the VMM should protect against BHI attacks by
1504  * setting BHI_DIS_S for the guests.
1505  *
1506  * CALLs/RETs are necessary to prevent Loop Stream Detector(LSD) from engaging
1507  * and not clearing the branch history. The call tree looks like:
1508  *
1509  * call 1
1510  *    call 2
1511  *      call 2
1512  *        call 2
1513  *          call 2
1514  *            call 2
1515  *            ret
1516  *          ret
1517  *        ret
1518  *      ret
1519  *    ret
1520  * ret
1521  *
1522  * This means that the stack is non-constant and ORC can't unwind it with %rsp
1523  * alone.  Therefore we unconditionally set up the frame pointer, which allows
1524  * ORC to unwind properly.
1525  *
1526  * The alignment is for performance and not for safety, and may be safely
1527  * refactored in the future if needed.
1528  */
1529 SYM_FUNC_START(clear_bhb_loop)
1530         push    %rbp
1531         mov     %rsp, %rbp
1532         movl    $5, %ecx
1533         ANNOTATE_INTRA_FUNCTION_CALL
1534         call    1f
1535         jmp     5f
1536         .align 64, 0xcc
1537         ANNOTATE_INTRA_FUNCTION_CALL
1538 1:      call    2f
1539         RET
1540         .align 64, 0xcc
1541 2:      movl    $5, %eax
1542 3:      jmp     4f
1543         nop
1544 4:      sub     $1, %eax
1545         jnz     3b
1546         sub     $1, %ecx
1547         jnz     1b
1548         RET
1549 5:      lfence
1550         pop     %rbp
1551         RET
1552 SYM_FUNC_END(clear_bhb_loop)
1553 EXPORT_SYMBOL_GPL(clear_bhb_loop)
1554 STACK_FRAME_NON_STANDARD(clear_bhb_loop)